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Abstract. Physical keyboards persist as one of the most common in-
put devices for personal computers. Low familiarity with the keyboard
translates to frustration during text entry, as the user constantly shifts
their attention between the keyboard and the screen, in order to locate
the next key to press, and to inspect input for errors. To decrease the
need for attention shifts, we present physical keyboard typists with vi-
sual feedback, within their field of view, using an RGB LED strip to
indicate spelling errors in different colours. We conducted a user experi-
ment with 36 participants. Users’ performance was evaluated a) without
visual feedback, b) showing feedback with a LED strip on the keyboard,
and c) showing feedback with a LED strip at the bottom of the screen.
We find that our prototype improves corrective action behaviour for slow
typists and reduces screen-glancing behaviour for fast typists.

Keywords: Text entry · Intelligent keyboards · Physical keyboards ·
Visual feedback

1 Introduction

Mobile devices are overtaking personal computers (PCs) as the device most likely
to be owned and operated by the general population. However, PCs remain
indispensable for a range of creative tasks which require long text entry sessions
(e.g. document editing, coding, etc.). A key enabler for such tasks is the physical
keyboard, which may also, at times, be connected to mobile devices such as tablet
computers. Physical keyboards allow superlative text entry rates compared to
mobile virtual keyboards, and the keyboard-mouse combination affords accurate
and fast error-correction. Due to the physicality of keyboards, users can become
proficient to the extent that they can touch-type, i.e. enter text without looking
at the keyboard at all. However, all users have to start off as novices, and even
those who attain touch-typing skills, often do not carry them forward in everyday
use [22]. Further, with PCs increasingly used by users of older age, and users with
vision problems, text entry with physical keyboards still deserves the attention of
researchers, and might benefit from integration with some intelligence to support
text entry, just as mobile keyboards have benefited in the past.
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Fig. 1. LEDBoard operating principles. A spellcheck is performed after a word has
been typed. If there are no errors, the strip lights up green (left). Errors cause the strip
to light up yellow (middle) if they are slight, or red (right) if the word is unintelligible.
The strip can be positioned either on the keyboard itself, or on the computer monitor.

In this paper, we discuss LEDBoard, an augmentation of the physical key-
board with a visual feedback cue mechanism, to provide text entry error aware-
ness to users. Our aim is to support novice users in improving their performance
with physical keyboards, hypothesising that error-checking behaviour (i.e. look-
ing up at the screen to check recently input text) and corrective actions can be
better supported if the user does not have to visually scan for errors during typ-
ing. Our prototype (Fig. 1) provides visual feedback on the keyboard itself, or at
the bottom of the computer’s monitor (within the peripheral vision of a user).
We evaluate the prototype with a cohort of young computer science students
whose text entry skills vary and find that LEDBoard improves corrective action
for slow typists and reduces screen-glancing behaviour in fast typists.

2 Related Work

Mobile keyboards have received much attention in terms of support for text en-
try, since the difficulty of entry imposed by the device size constraints, as well as
the opportunities afforded by the virtual nature of soft keyboards, have acted as
drivers for innovative approaches to support text entry. For example, autocor-
rection and next-word prediction [4, 19], gestural input [13], error highlighting
[1, 12], even totally invisible keyboards [24] have been successfully demonstrated
either as research prototypes, or even commercially implemented.

In contrast, text entry in physical desktop keyboards has not received as
much attention in the last two decades. Studies such as [5, 8, 16, 20] focus on the
observation and analysis of user behaviour during text entry, including atten-
tion, motor and cognitive performance during various text entry tasks. Previous
efforts to augment physical keyboards with novel abilities, include implementing
methods to recognize sounds while using the keyboard [10, 14], creating pres-
sure sensitive keyboards [7], recognizing objects interacting on physical areas
[11], enhancing physical keyboards to act as pointing devices [17] or detecting
gestures performed on the keyboard [23]. Further, the integration of physical
keyboards in virtual or mixed reality has recently become a topic of interest,



LEDBoard 3

focusing mostly on reconfiguration or augmentation of information displayed on
the keyboard (e.g. [15, 18]). All these efforts aimed at reducing input time or
user’ effort and improve user performance, but we have not been able to source
previous literature relating to the implementation of intelligent error-correction,
or error-prevention methods for physical keyboards. Commercially, Apple’s post
2016 MacBook Pro models with a touch bar, allowed the implementation of
predictive text for some applications.

Given the proliferation of computers in society, the requirement to support
text entry for novice users is urgent. Physical keyboards augmented with a level
of intelligence to support text entry could help the learning process for novices,
or support users with limited abilities. Our aim for this paper is to evaluate an
error support system for physical keyboards, in the form of a visual feedback
indicator that detects and informs users about text entry errors as they type.

3 Materials and Method

3.1 Materials

To implement LEDBoard, we used a Raspberry Pi 4 microcontroller (RPi) as
a proxy between a physical keyboard and the host computer operated by the
user. The physical keyboard is connected to the RPi, which forwards incoming
characters to the host computer, while keeping a sentence-level buffer, to support
cases where the user corrects a mistake earlier than at the end of the input
stream. At the same time, the RPi checks user input for spelling mistakes after
each word has been typed, and controls an RGB LED strip to provide visual
feedback when it detects them.

The RPi was configured using Python 3 to be recognized as a keyboard device
once connected to a computer via USB. The keyboard used by the participants
during the experiment was connected to the RPi directly and the device pro-
vided the computer with the characters pressed by the user and simultaneously
presented its output on a second screen, which participants could not see.

For spell-checking the Python library PyEnchant was used. Every time a
full word was typed by the users, a spellchecking function ran, and using the
Levenshtein distance between the user entered text and the first suggestion
provided by the PyEnchant library, the program classified the entry as non-
erroneous (e.g. the kth word input by the user Ik = Hello, the 1st suggestion
being S1 = Hello), a slight error (e.g. Ik = Hellp, S1 = Hello), or a serious
error (e.g. Ik = Hwllp, S1 = Hello).

To provide users with visual feedback, a strip of non-addressable RGB LEDs
was used. The materials used were 1) a LED strip with three terminals for RGB
and one terminal for 12V DC power supply, 2) a breadboard, 3) three N-channel
MOSFETS, 4) a suitable external power supply of the LED strip (12V DC 2A),
5) a power jack to separate the power supply plug into positive and negative, 6)
cables with terminals for the wiring. The wiring scheme between the RPi and
the LED strip is shown in Fig. 2. The LED strip was placed in an aluminium



4 A. Komninos et al.

Fig. 2. Wiring scheme between the Raspberry Pi 4 and the LED strip

casing with an opaque cover, to diffuse the light and improve visibility. Full
implementation details and code are openly available (see Section 6).

3.2 Participants

We recruited 38 first year undergraduate CS students from our university, to
take part in the experiment without compensation. We selected this sample
to represent users with a clear need to frequently use physical keyboards, but
with moderate experience in their use. Two of them were later excluded, as
they reported inability to distinguish between the colours used, due to colour
blindness. The average age of remaining participants was 19.81 (σ = 2.82), out
of which 31 were male and 5 were female. 71.1% of them had an advanced or
higher certificate of proficiency in English.

3.3 Procedure

Our experiment employed the typical phrase transcription task used in most text
entry research protocols. WebTem [2] was used to record and gather text entry
metrics during the experiment. The phrases presented to users were selected from
the “200 Memorable English Phrases” phrase set [21] and were all presented in
lower case. WebTem records a range of metrics, but for this paper we focus
on Words per Minute (WPM), Total Error Rate (TER), Corrected Error Rate
(CER), and BackSpace Count (BC). We also analyse interkey intervals (IKI).

The experiment began with participants filling out a form regarding their
demographic characteristics and answering to some questions on the frequency of
use of physical keyboards and on how familiar with using physical keyboards they
are. After completing the form, operation of the LEDBoard was explained and
demonstrated to the participants, including the semantics of the colour feedback,
before starting. The process was divided into 3 input sessions of 10 phrases each,
per condition (Baseline: no visual feedback; Keyboard : visual feedback on the
keyboard; Screen: visual feedback at the bottom of the computer monitor, Fig.
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Fig. 3. Position of LED strips

3), resulting in 90 phrases per participant in total. Participants were asked to
type freely, looking at either the screen or the keyboard while typing, and to
correct any spelling errors using only the backspace key. Having completed all
three sessions in a condition, participants were administered a NASA Task Load
Index (NASA – TLX [9]) instrument and a few minutes’ break followed.

4 Results

We divided participants in two groups. Those with a self described familiarity
with QWERTY (≤ 3 on a 5-point Likert scale) or use of single digit typing were
assigned to the "Slow" group (18 participants). The "Fast" group participants
had an average WPM of 62.852 (σ = 19.652) while the "Slow" group has an
average WPM of 34.333 (σ = 6.334). This split aligns reasonably well with
findings in [6] where the average is 51.56WPM (σ = 20.20) Subsequent analyses
were made using statistical hypothesis testing. Tests were chosen after examining
the data and its fulfilment of assumptions for parametric and non-parametric test
use. Data was analysed using Python 3.8 and SPSS v27.

4.1 Typing Speed and Total Error Rate

First, we examine the impact of the device in participant typing speed (words-
per-minute) and total error rate, as measures of participant experience. We hy-
pothesize that experienced participants will demonstrate a better typing speed
without making more mistakes during text entry, compared to participants in
the inexperienced group, at least for the baseline condition.

With regard to input speed, fast participants exhibit a higher WPM measure
across all conditions (Fig. 4 left). The difference with the slow group is statisti-
cally significant, across conditions (Mann-Whitney U, Baseline Z = −5.125, p <
0.001; Keyboard Z = −4.714, p =< 0.001; Screen Z = −4.746, p =< 0.001).
We also note that Friedman tests across the conditions in each group also show
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no statistically significant differences (Fast χ2 = 1.444, p = 0.486; Inexperienced
χ2 = 1.333, p = 0.513), demonstrating that the presence of the device did not
affect either group’s text entry speed.

Fig. 4. Words per Minute and Total Error Rate per condition

Another indicator of participant expertise is total error rate (errors made
during typing regardless of being fixed), see Fig. 4 right. For this metric, dif-
ferences across conditions in each group did not exhibit statistical significance
(Mann-Whitney U Baseline Z = −0.664, p = 0.506; Keyboard Z = −0.285, p =
0.776; Screen Z = −1.266, p = 0.206). Friedman tests to compare across con-
ditions in each group again show no statistically significant differences (Fast
χ2 = 0.444, p = 0.801; Slow χ2 = 1.778, p = 0.411). While we might have
expected that slower, less experienced typists might make more errors during
typing, it is known from literature that users will trade speed for accuracy to
prevent errors, therefore the finding is in accordance with the lower WPM dis-
covered for the inexperienced group [3]. Paired with the findings from text entry
speed, we find here evidence that the grouping of our participants is sensible.

4.2 Error-correcting behaviour

We hypothesise that the device will make typing errors more obvious, thus result-
ing in a higher corrected error rate. There were statistically significant differences
in the corrected error rate between the groups and across conditions (Mann-
Whitney U Baseline Z = −2.088, p = 0.037; Keyboard Z = −3.132, p = 0.002;
Screen Z = −3.417, p ≤ 0.001). A Friedman test showed that differences across
conditions in the Fast group were not statistically significant, but the reverse
was found for the Slow group (Fast χ2 = 1.000, p = 0.607; Slow χ2 = 8.111, p =
0.017). Post-hoc Bonferroni corrected pairwise tests for the Slow group reveal
a statistically significant difference between the Baseline and Screen conditions
only (Wilcoxon Z = −2.983, p = 0.003). The results are shown in Fig. 5 (left).
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Fig. 5. Corrected Error Rate and Backspace Count per condition

A further related metric is use of backspaces to correct errors. In fact, Spear-
man correlations in all conditions between corrected error rate and backspace
use are all statistically significant at the p < 0.001 level, for both the Fast and
Slow groups. As with the corrected error metric, differences are observable in Fig.
5 (right) and we found statistically significant differences between groups and
across conditions (Mann-Whitney U Baseline Z = −2.137, p = 0.033; Keyboard
Z = −2.960, p = 0.003; Screen Z = −3.039, p = 0.002). Comparing conditions
within the groups, we find no statistically significant differences in the Fast
group (χ2 = 1.211, p = 0.546) but the Slow group demonstrates statistical sig-
nificance (χ2 = 9.155, p = 0.010). Again this difference is statistically significant
after pairwise post-hoc Bonferroni corrected tests only between the Screen and
Baseline condition (Wilcoxon Z = −2.809, p = 0.005).

4.3 Glancing behaviour

Typists have to look at the screen in order to identify mistakes during text entry.
For touch-typists, this is not so much a problem since their attention is already
on the screen, however, non-expert typists need to frequently shift their attention
between the keyboard and the screen to check for entry errors. Our hypothesis
was that our device might reduce the number of shifts, therefore explored glanc-
ing behaviour with and without LEDBoard. To identify glancing episodes, we
rely on the interkey interval (IKI) (i.e. time elapsed between consecutive key-
presses). A glancing episode is characterised by a high IKI, compared to the
IKI observed during typing. This can be illustrated when plotting the keyboard
events during an entire session as a signal, with an amplitude according to the
IKI of each event (Fig. 6). Since every participant’s behaviour is unique, to iden-
tify these "peaks" in the signal we employ a signal processing method to discover
local maxima in the signal, setting a minimum height for identified peaks equal
to the mean IKI of the entire session plus a multiple of the session IKI standard
deviation (x̄IKI + n× σIKI).
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Fig. 6. Example of IKI plotting of one session from a single participant. Peaks are
identified with x-markers at x̄+ 2σ, and square outlined markers at x̄+ 3σ

Fig. 7. Interkey intervals per condition, at x̄+ 2σ and x̄+ 3σ

As observed in Fig. 7, there are some observable differences in the peaks at
2σ and 3σ, however, these are only statistically significantly different between
groups for the 2σ mean in the Keyboard condition (Mann U, Z − 2.830, p =
0.005). Further, for each group, there are no statistically significant differences
across the conditions, both for peaks at 2σ and 3σ. Measuring the number of
users who benefited from fewer glances in each group, we find that it is actually
the Fast typists who benefit most, as 13/18 participants saw a reduction in
glances (at 2σ) in the Keyboard condition (max reduction 57%, min reduction
4%, barx = 31.91%, σ = 14.06%). In contrast, only 4/18 of the slow typists
benefited from the device in the keyboard condition (max reduction 47%, min
reduction 19%, barx = 34.44%, σ = 12.44%).
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4.4 Subjective Feedback

As discussed earlier, participants undertook a NASA-TLX test after each condi-
tion. Overall we found no statistically significant difference except for Physical
Demand in the baseline condition between the groups (Mann U Z = −2.716, p =
0.007) where the Slow group indicated a higher physical demand (x̄ = 30.00, σ =
4.240) compared to the Fast group (x̄ = 15.56, σ = 1.847). Comparing within
the groups and across conditions, Friedman tests showed statistically significant
differences within the Fast group for physical demand (χ2 = 13.579, p = 0.001)
and temporal demand (χ2 = 8, 464, p = 0.015). Wilcoxon post hoc tests with
Bonferroni correction show that the Fast group perceived higher physical de-
mand against baseline with the keyboard condition (Z = −2.740, p = 0.006) and
screen condition (Z = −2.993, p = 0.003), while for temporal demands there were
no statistically significant results in the pairwise tests. In the Slow group, only
performance showed a statistically significant difference (χ2 = 8.400, p = 0.015)
but Wilcoxon post hoc tests with Bonferroni correction did not uncover further
statistically significant differences. Overall, although differences in participant
performance were discovered in the quantitative analysis, these differences were
imperceptible from a subjective point of view to participants, demonstrating
that the device is able to subtly and unobtrusively deliver likely benefits.

5 Discussion

From our findings, we summarise LEDBoard did not have an impact in partic-
ipant text entry speed or error rates committed during input. This is under-
standable - the experience and motor skills of participants cannot be gravely
affected in the course of a short experiment. On the other hand, we noticed that
LEDBoard was successful in helping slow typists become more aware of their
entry errors and to correct more of these, compared to fast typists. Despite our
hopes that the device would generate confidence in the slow typists and reduce
their need to frequently glance at the screen in order to detect mistakes, we did
not find any evidence to support this hypothesis. In fact, the device seems to
increase glancing in slow typists, while fast typists were able to take advantage
of its presence to further reduce their error-checking behaviour.

As with any experiment, the generalisability of our findings is constrained by
the selection of our sample population. We recruited solely 1st year computer
science students, thus their level of familiarity with physical keyboard entry may
not necessarily be the same as the general population. In the future, we would
like to repeat our experiment with a population from other backgrounds and to
observe the prototype’s effect on users of older age, or with vision problems.

Improvements to our prototype could include error-detection at the bigram
or n-gram level (e.g. alerting the user that an unlikely character has just been
entered, instead of at the end of a word), as well as syntax and grammar support.
Different feedback display strategies could also be investigated, e.g. blinking,
animations, or gradual fading of the lighting, as text entry progresses.
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Another limitation is the need for the microcontroller to preserve a sentence-
level buffer in case the user wants to correct previously entered words. Even with
this implementation, the system would not work in case the user tried to edit
text written in a previous paragraph or earlier, as the microcontroller would
have no way to obtain the context of the text being edited (cursor position
and text). To allow smart keyboards such as LEDBoard full integration with
applications, significant changes to the operating system and keyboard drivers
would be required in order to allow the keyboard microcontroller to obtain the
edited text context. A "workaround" might be possible by using the accessibility
features built into various operating systems, and by setting up a server on the
host computer to feed this contextual information back to the microcontroller.

To summarise, we discover reasonable evidence to support the integration of
methods for intelligent text entry support in physical keyboards. Such support
may provide various types of benefits to users, according to their current skill
and expertise. More work is needed to better understand the likely benefits
across various user categories (e.g. novices, children, elderly, disabled), and to
determine optimal feedback strategies to maximise these benefits to users.

6 Code and Data availability

The project implementation details, source code and experiment data are openly
available at https://github.com/komis1/LEDBoard.

References

1. Alharbi, O., Arif, A.S., Stuerzlinger, W., Dunlop, M.D., Komninos, A.: Wise-
Type: A tablet keyboard with color-coded visualization and various edit-
ing options for error correction. In: Proceedings of graphics interface 2019.
GI 2019, Canadian Information Processing Society, Kingston, Ontario (2019).
https://doi.org/10.20380/GI2019.04, iSSN: 0713-5424 Number of pages: 10

2. Arif, A.S., Mazalek, A.: WebTEM: A Web Application to Record Text Entry Met-
rics. In: Proceedings of the 2016 ACM International Conference on Interactive
Surfaces and Spaces. pp. 415–420. ISS ’16, Association for Computing Machin-
ery, New York, NY, USA (Aug 2016). https://doi.org/10.1145/2992154.2996791,
https://doi.org/10.1145/2992154.2996791

3. Banovic, N., Rao, V., Saravanan, A., Dey, A.K., Mankoff, J.: Quantifying
aversion to costly typing errors in expert mobile text entry. In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems.
p. 4229–4241. CHI ’17, ACM (2017). https://doi.org/10.1145/3025453.3025695,
http://doi.acm.org/10.1145/3025453.3025695

4. Cerney, M.M., Mila, B.D., Hill, L.C.: Comparison of Mobile Text Entry Meth-
ods. Proceedings of the Human Factors and Ergonomics Society Annual Meet-
ing 48(5), 778–782 (Sep 2004). https://doi.org/10.1177/154193120404800508,
https://doi.org/10.1177/154193120404800508, publisher: SAGE Publications Inc

5. Dhakal, V., Feit, A.M., Kristensson, P.O., Oulasvirta, A.: Observa-
tions on Typing from 136 Million Keystrokes. In: Proceedings of



LEDBoard 11

the 2018 CHI Conference on Human Factors in Computing Sys-
tems. pp. 1–12. CHI ’18, Association for Computing Machinery, New
York, NY, USA (Apr 2018). https://doi.org/10.1145/3173574.3174220,
https://doi.org/10.1145/3173574.3174220

6. Dhakal, V., Feit, A.M., Kristensson, P.O., Oulasvirta, A.: Obser-
vations on typing from 136 million keystrokes. In: Proceedings of
the 2018 CHI Conference on Human Factors in Computing Sys-
tems. p. 1–12. CHI ’18, Association for Computing Machinery, New
York, NY, USA (Apr 2018). https://doi.org/10.1145/3173574.3174220,
https://doi.org/10.1145/3173574.3174220

7. Dietz, P., Eidelson, B., Westhues, J., Bathiche, S.: A practi-
cal pressure sensitive computer keyboard. pp. 55–58 (Jan 2009).
https://doi.org/10.1145/1622176.1622187

8. Feit, A.M., Weir, D., Oulasvirta, A.: How We Type: Movement Strate-
gies and Performance in Everyday Typing. In: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. pp.
4262–4273. CHI ’16, Association for Computing Machinery, San Jose,
California, USA (May 2016). https://doi.org/10.1145/2858036.2858233,
https://doi.org/10.1145/2858036.2858233

9. Hart, S., Staveland, L.: Development of NASA-TLX (Task Load Index): Results
of Empirical and Theoretical Research (1988). https://doi.org/10.1016/S0166-
4115(08)62386-9

10. Kato, J., Sakamoto, D., Igarashi, T.: Surfboard: Keyboard with microphone as a
low-cost interactive surface (Oct 2010). https://doi.org/10.1145/1866218.1866233

11. Kim, D., Izadi, S., Dostal, J., Rhemann, C., Keskin, C., Zach, C., Shotton, J.,
Large, T., Bathiche, S., Nießner, M., Butler, D.A., Fanello, S., Pradeep, V.:
RetroDepth: 3D silhouette sensing for high-precision input on and above phys-
ical surfaces. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. pp. 1377–1386. CHI ’14, Association for Computing Machin-
ery, New York, NY, USA (Dec 2014). https://doi.org/10.1145/2556288.2557336,
https://doi.org/10.1145/2556288.2557336

12. Komninos, A., Nicol, E., Dunlop, M.D.: Designed with Older Adults to
SupportBetter Error Correction in SmartPhone Text Entry: The Max-
ieKeyboard. In: Proceedings of the 17th International Conference on
Human-Computer Interaction with Mobile Devices and Services Adjunct.
pp. 797–802. MobileHCI ’15, Association for Computing Machinery, New
York, NY, USA (Aug 2015). https://doi.org/10.1145/2786567.2793703,
https://doi.org/10.1145/2786567.2793703

13. Kristensson, P.O., Zhai, S.: SHARK2: a large vocabulary shorthand
writing system for pen-based computers. In: Proceedings of the 17th
annual ACM symposium on User interface software and technology.
pp. 43–52. UIST ’04, Association for Computing Machinery, New
York, NY, USA (Oct 2004). https://doi.org/10.1145/1029632.1029640,
https://doi.org/10.1145/1029632.1029640

14. Kurosawa, T., Shizuki, B., Tanaka, J.: Keyboard Clawing: Input Method by
Clawing Key Tops. In: Kurosu, M. (ed.) Human-Computer Interaction. Inter-
action Modalities and Techniques. pp. 272–280. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39330-3_29



12 A. Komninos et al.

15. McGill, M., Brewster, S., De Sa Medeiros, D.P., Bovet, S., Gutierrez, M.,
Kehoe, A.: Creating and Augmenting Keyboards for Extended Reality with
the Keyboard Augmentation Toolkit. ACM Transactions on Computer-Human
Interaction 29(2), 15:1–15:39 (Jan 2022). https://doi.org/10.1145/3490495,
https://doi.org/10.1145/3490495

16. Papoutsaki, A., Gokaslan, A., Tompkin, J., He, Y., Huang, J.: The eye
of the typer: a benchmark and analysis of gaze behavior during typ-
ing. In: Proceedings of the 2018 ACM Symposium on Eye Tracking Re-
search & Applications. pp. 1–9. ETRA ’18, Association for Computing Ma-
chinery, Warsaw, Poland (Jun 2018). https://doi.org/10.1145/3204493.3204552,
https://doi.org/10.1145/3204493.3204552

17. Ramos, J., Li, Z., Rosas, J., Banovic, N., Mankoff, J., Dey, A.: Keyboard Surface
Interaction: Making the keyboard into a pointing device. arXiv:1601.04029 [cs]
(Jan 2016), http://arxiv.org/abs/1601.04029, arXiv: 1601.04029

18. Schneider, D., Otte, A., Gesslein, T., Gagel, P., Kuth, B., Damlakhi,
M.S., Dietz, O., Ofek, E., Pahud, M., Kristensson, P.O., Müller, J.,
Grubert, J.: ReconViguRation: Reconfiguring Physical Keyboards in Vir-
tual Reality. IEEE Transactions on Visualization and Computer Graphics
25(11), 3190–3201 (Nov 2019). https://doi.org/10.1109/TVCG.2019.2932239,
https://www.computer.org/csdl/journal/tg/2019/11/08794572/1dXEHv0aKMo

19. Silfverberg, M., MacKenzie, I.S., Korhonen, P.: Predicting text entry speed on
mobile phones. In: Proceedings of the SIGCHI conference on Human Factors
in Computing Systems. pp. 9–16. CHI ’00, Association for Computing Machin-
ery, New York, NY, USA (Apr 2000). https://doi.org/10.1145/332040.332044,
https://doi.org/10.1145/332040.332044

20. Soukoreff, R.W., MacKenzie, I.S.: Metrics for Text Entry Research: An Evalua-
tion of MSD and KSPC, and a New Unified Error Metric. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. pp. 113–120. CHI
’03, ACM, New York, NY, USA (2003). https://doi.org/10.1145/642611.642632,
http://doi.acm.org/10.1145/642611.642632

21. Vertanen, K., Kristensson, P.O.: A versatile dataset for text entry evalua-
tions based on genuine mobile emails. In: Proceedings of the 13th Interna-
tional Conference on Human Computer Interaction with Mobile Devices and
Services. pp. 295–298. MobileHCI ’11, Association for Computing Machinery,
New York, NY, USA (May 2011). https://doi.org/10.1145/2037373.2037418,
https://doi.org/10.1145/2037373.2037418

22. Yechiam, E., Erev, I., Yehene, V., Gopher, D.: Melioration and the transition from
touch-typing training to everyday use. Human Factors 45(4), 671–684 (Dec 2003).
https://doi.org/10.1518/hfes.45.4.671.27085

23. Zhang, H., Li, Y.: GestKeyboard: enabling gesture-based interaction on ordinary
physical keyboard. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. pp. 1675–1684. CHI ’14, Association for Computing Machin-
ery, New York, NY, USA (Dec 2014). https://doi.org/10.1145/2556288.2557362,
https://doi.org/10.1145/2556288.2557362

24. Zhu, S., Luo, T., Bi, X., Zhai, S.: Typing on an Invisible Keyboard.
In: Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems. pp. 1–13. CHI ’18, Association for Computing Machinery,
Montreal QC, Canada (Apr 2018). https://doi.org/10.1145/3173574.3174013,
https://doi.org/10.1145/3173574.3174013


