[0T Integration in the Manufacturing Environment
Towards Industry 4.0 Applications

Christos Alexakos, Andreas Komninos, Christos Anagnostopoulos,
George Kalogeras and Athanasios Kalogeras
Industrial Systems Institute
ATHENA R.C.
Patras, Greece
Email: alexakos@isi.gr, komninos @isi.gr, anagnostopoulos @isi.gr,
gkalogeras @isi.gr, kalogeras @isi.gr

Abstract—The manufacturing environment undergoes a dis-
ruptive evolution due to the Fourth Industrial Revolution driven
by the Industrial Internet of Things and Cyber Physical Systems
technologies. This evolution is applicable to further sectors
comprising similar requirements, involving large numbers of
devices that need to interoperate, exchange their data and be
controlled. Integration at the manufacturing environment re-
mains a challenge taking into account the diversity of equipment
/ devices, the existence of legacy systems, and the need to
integrate IoT devices participating in the production paradigm.
This paper presents an AutomationML based approach for this
integration, modeling the industrial manufacturing environment,
and enabling its emulation through a 3D Virtual Environment.

Index Terms—Manufacturing Environment, AutomationML

I. INTRODUCTION

The concept of utilizing computing and networking equip-
ment to enable monitoring and control of different types of
devices has been around and evolving for several decades.
This has given birth to the term Internet of Things (IoT) rep-
resenting a paradigm in which a wide array of everyday objects
or “things”, often equipped with ubiquitous intelligence, are
interconnected via networks [1]. One of the first sectors that
exploited IoT possible benefits through the interconnection
of a large number of devices is the industrial/manufacturing
sector. Such is the impact of IoT technology integration
in manufacturing, that has led to disruptive advancements
deemed as the Fourth Industrial revolution. IoT applications
were rapidly integrated into industrial products. Large and
complex CyberPhysical Systems (CPS) over the Industrial
Internet of Things (IIoT) have increased the Fourth Indus-
trial Revolution impact in diverse areas, including further to
manufacturing, among others critical infrastructure protection,
smart buildings and cities, and health. The manufacturing

We acknowledge support of this work by the project I3T - Innovative
Application of Industrial Internet of Things (IIoT) in Smart Environments
(MIS 5002434) which is implemented under the “Action for the Strategic
Development on the Research and Technological Sector”, funded by the
Operational Programme “Competitiveness, Entrepreneurship and Innovation”
(NSRF 2014-2020) and co-financed by Greece and the European Union
(European Regional Development Fund).

copyright2020 IEEE

environment has undergone a profound transformation through
innovative and highly agile products and services, that can
become partially independent, responsive and interactive, track
their activity in real-time and optimize whole value chain via
relevant status information throughout their lifecycle [2].

A major challenge for the application of the Fourth In-
dustrial Revolution digitization concept, and more specifically
Industry 4.0, in manufacturing is the integration of all legacy
systems with new systems and networks, so as to efficiently
collaborate to the end of providing flexible manufacturing ser-
vices. Legacy control systems, IIoT and IoT devices intercon-
nected via different type of networks (Wifi, Modbus, Ethernet,
etc.) must expose their functionalities to other systems for
utilization in a context of advanced manufacturing paradigms
such as collaborative manufacturing. Towards this end, OPC
UA serves as an open standard for communication of manufac-
turing control devices with third systems. Even in the case that
systems residing at the lower layers of the classical automation
pyramid are interoperable, a unified model is needed defining
the overall integrated manufacturing environment including
assets, functionalities/operations and manufacturing processes.
AutomationML fulfills most of these requirements and allows
modeling of the manufacturing environment in a wider per-
spective defining assets and relationships.

This paper presents an approach for integration of legacy
industrial equipment, IoT and IIoT Devices that need to collab-
orate in the context of the manufacturing production process.
The approach uses AutomationML as engineering standard
to model shop floor layer. The generated model is able to
be realised and deployed in real production environment, as
it permits automatic configuration of core functional compo-
nents of the architecture. Moreover, the proposed architectural
scheme makes possible automatic emulation of the designed
model in a 3D Virtual Manufacturing Environment, driving
towards a Digital Twin approach of virtual representation of
manufacturing ’things” operation and living throughout their
lifecycle [3]. This Virtual environment can be used to depict
the execution of real production processes.

The paper is structured as follows. Section II presents briefly
major technologies and methodologies for Industry 4.0 concept
application. Section III describes manufacturing environment

modeling via AutomationML. Section IV presents proposed
system architecture and its operation under configuration and
execution modes. For proposed approach evaluation, a hybrid
environment of real and virtual components is used and
outcomes are presented in Section V. Finally, conclusions and
future work are presented in Section VI.

II. TOWARDS INDUSTRY 4.0

CPS over IIoT have spurred the Fourth Industrial Revo-
lution, leading major industrial players to develop initiatives
that promote integration of novel technological concepts into
highly intelligent manufacturing processes. Two major such
initiatives are Industry 4.0 and the Industrial Internet Consor-
tium (IIC), originating from Germany and USA respectively.
A major goal of both is to offer architectural models that
serve as standards for application developers. The Industry 4.0
Platform proposed Reference Architectural Model Industry 4.0
(RAMI 4.0) [4]. IIC proposed the Industrial Internet Reference
Architecture (IIRA) [5], a more generic approach meant to
cover a wider range of IloT applications.

IoT and cloud computing are cost-effective and flexible
solutions. IoT devices like smart sensors, RFID tags, etc.
enable immediate collection of data to monitor health of
products and equipment in real time [6], [7]. Finally, cloud
computing provides a cost effective model for data storage and
processing, through a highly flexible support that can grow or
shrink dynamically minimizing local management costs.

It is apparent that digitization is one of the key differen-
tiators enabling companies to be competitive in the future,
through integrating different technologies, data, applications,
devices and resources in general. To facilitate this cause, indus-
trial platform development as part of reference architectures
is essential, so that data from various sources implemented by
different technologies via well-defined architectures are made
available for use by various applications. A platform selection
decision is not an easy task and many factors have to be
considered. Some criteria may be platform scalability capabil-
ities, whether it is open-source or not, integrability with other
tools and platforms, security mechanisms implemented, cost,
degree of maturity, and real-time interaction (latency control).
A comparison of different digital platforms is provided in [8].

III. MANUFACTURING ENVIRONMENT MODELLING

Manufacturing involves a range of systems related to var-
ious operational aspects of the product lifecycle. Diverse
software systems relating to product lifecycle management,
supply chain management, enterprise resource planning and
manufacturing execution systems are often installed as stand-
alone components, facing significant integration challenges,
due to lack of a common standard for data exchange [9]. To
address this issue, AutomationML standard emerged as part of
an industry-led effort to develop and adopt an open standard
for data exchange, applied to whole manufacturing lifecycle.
Further to its use as a common standard to improve discrete
system interoperability in manufacturing, AutomationML has
been used as a design tool to develop systems from the ground

up [10]-[12] and to enable a range of developments in Industry
4.0, aiming at total digitization of the manufacturing process,
including concepts such as the Digital Twin [13], [14].

AutomationML is an XML-based data format, encapsulating
use of various other industry-relevant data formats to suit
specific purposes. Summarizing AutomationML functionality
and design-enabling features, engineers are able to model a
manufacturing environment at any level of abstraction, from
high-level concepts such as a manufacturing robot, down to
individual nuts and bolts that make up any device, depending
on desired functionality. AutomationML allows engineers to
define individual manufacturing component topology, through
properties and relations in hierarchical structures of objects,
using the CAEX standard (IEC 62424). Object geometry and
kinematics can be specified for each object in its Automa-
tionML entry, using a reference to COLLADA format files.
System logic can be implemented using PLCOpen XML.

At the design level, the bulk of the engineering process rests
with decisions that need to be taken to model the topology
and object hierarchies. AutomationML defines four basic
concepts in which design decisions are made. The Instance
Hierarchy defines the topology of shop floor, defining abstract
entities (e.g. a “milling station”) which can be populated with
instances of distinct objects or object instance hierarchies
(e.g. “conveyor belt”, which in turn may include “belt motor”
and “photoresistor sensor”). Each object is defined by a
System Unit Class, which describes collections of vendor-
specific equipment. Multiple such classes can serve one or
more role in the system. Roles are defined using Role Class
elements, providing semantics to the components of each
System Unit Class. Finally, the Interface Class elements define
commonalities that are are shared between Role or System
Unit classes. As can be seen, AutomationML borrows heavily
from the concept of object-orientation, allowing the definition
of complex class types using nested hierarchies, inheritance,
abstraction and encapsulation. This flexibility is not often
matched by other components critical to the operation of
a smart manufacturing facility, which use less flexible ab-
straction and modelling concepts. Therefore, AutomationML
topologies and relations cannot be readily used without trans-
lation and mapping into the particular conceptual constraints
of subsystems.

IV. PROPOSED ARCHITECTURE
A. General System Architecture

The proposed system architecture is designed for support-
ing engineers to model the resources, industrial devices or
common IoT devices, at the manufacturing shop floor layer
along with their operations. The final scope is the automatic
configuration of all the monitoring and response infrastructure
in order to be ready for deployment in a manufacturing envi-
ronment. In order to cover the engineering requirements the
system supports two types of runtime environments: a) a real
shop floor with machinery, sensors and actuators (including
humans), and b) a virtual manufacturing environment based
on Unity 3D engine. The basic idea behind this decision is the

AutomationML
Editor

loT Platform

,
:
1
H
|
¥

UPC UA Server [———
H
H
Virtual Factory Floor) & Real Factory Floor)
v

Unity 3D Engine lloT 57

Device

lloT

el

loT

k_’| Device$j
loT
loT

g] Tra
‘Virtual Device $]| ‘Virtual lloT E‘ ‘Virtual loT E‘

Fig. 1. Proposed System Architecture

expansion of the utilization of the proposed system in more
cases than the classical manufacturing automation. Thus, it can
operate in three modes, each one with different purposes:

« Real Factory Floor Execution: In this mode only the
system is used for the integration of all the resources in
the shop floor under one centralised entity able to collect
data and manage the manufacturing processes.

« Virtual Factory Floor Emulation This mode is gener-
ally used for purposes of demonstration or simulation.
The engineers will be able to test new manufacturing
processes or equipment.

o Hybrid Operation This mode includes both the op-
eration of a real and virtual environment. The virtual
environment can be used as an extension of the real
environment, usually for demonstration. Also, the virtual
environment can be a digital copy of the real one, putting
the basis for a digital twins infrastructure, where engi-
neers can monitor the execution in the real manufacturing
environment in a 3D presentation.

Fig. 1 depicts the overall system architecture with its major
operating components. Moreover, the interoperation between
these components is presented in arrows. Arrows with dashed
line show the data exchange during the configuration phase
and arrows with straight line represent the communication
during the execution phase. Each component is responsible
for providing descriptive services inside the system.

IoT Platform is the core component of the system. It
contains the registry of all the equipment and production
related data. It collects data from both Industrial components
and IoT devices, while also it is responsible for exchanging
data and commands between the systems in the upper layers
to the control systems in the production floor. For the inter-
operation with industrial equipment, an OPC UA interface is
used. A second communication interface based on the MQTT
protocol is used for communication with the IoT devices. In
the proposed approach the ThingsBoard open source platform
was used.

AutomatioML Editor provides a graphical interface to
the engineers in order to construct the model of the man-
ufacturing environment. Furthermore, it has two additional

interfaces. The first is the AutomationML2Tb which converts
the AutomationML schema to the model that is understandable
by the IoT Platform (ThingsBoard) and sets up the latter
through its configuration API. The second, named Automa-
tionML20OPCUA, translates the AutomationML to an XML
for OPC UA description. This description is sent to the OPC
UA server and to the virtual environment as a configuration
file.

OPC UA Server acts as the communication gateway be-
tween all the industrial equipment, both real and virtual,
and the IoT Platform. It is a classic OPC UA server which
is configured to operate according to the model described
by AutomationML, assuming that this model represents the
manufacturing environment. OPC UA Server is also used as
an abstraction for the connection of legacy systems (mainly
PLCs) allowing their integration to the overall system.

Unity 3D Engine is the core system of the Virtual Man-
ufacturing Environment. During the configuration phase it is
responsible to construct the 3D Virtual Environment according
to the AutomationML model. Additionally, it creates virtual
interfaces to the MQTT interface of the IoT platform and
also to a software PLC, emulating the communication of the
IoT platform with the industrial and IoT equipment. During
the execution phase the virtual environment is executing the
3D emulator based on its communication with the OPC UA
server in two modes: a) active, which simulates the operation
of the described production environment and b) passive, which
duplicates the operation of the real production environment, by
reading the OPC UA Server variables.

The proposed architecture is designed in order to provide
flexibility and scalability. In case of a manufacturing shop floor
with dozens of machines and controllers, it is feasible to have
many UPC UA Servers. In the modelling procedure this can be
achieved with different AutomationML files defining different
namespaces, each one for a UPC UA Server. Furthermore, the
ThingsBoard, which is the selected as IoT Platform, can be run
in a cluster of virtual systems, allowing it to grow according
to the connected devices/servers for supporting a large shop
floor.

B. Off-line Configuration

As discussed previously, the flexibility of AutomationML
for modelling purposes is not necessarily matched by other
components selected for the needs of a system. In our proposed
architecture, we use the Thingsboard platform to collect all
data from industrial components and IoT devices. However,
this platform offers only two types of entities: Assets and
Devices. The former is an abstract concept that describes a
logical grouping of devices or other assets, which can have
some data attributes, but are not associated with telemetry data.
The typical use case for these is to represent functional spaces
(e.g. a ’store room” asset, which can contain a “shelves” asset,
and multiple devices such as "C'Os sensor”, “temperature
sensor” etc). Without knowledge of this concept, the design
task using AutomationML may result in models that are
not compatible with this type of thinking. For example, in

4 ":- Factory
4 [ie] FeederArea
4 [ig] FeedConveyor {Class: ConveyorBelt}
4 [iE] Motor
0 DCMotor{Class: DCMotor }
4 [iE] StartSensor
~0 PhotoSensor{Class: PhotoSensor }
4 [ig] EndSensor
+0 PhotoSensor{Class: PhotoSensor }
4 [1E] ProcessingArea
4 [ie] PunchingConveyor {Class: ConveyorBelt}
4 [ie] Motor
0 DCMotor{Class: DCMotor }
[1] StartSensor
[1€] EndSensor
[1e] HolePuncher {Class: PunchingMachine}
[ie] StampPuncher {Class: PunchingMachine}
[1e] PackingArea
[1e] PumpMotor {Class: SpecialMotor}

Fig. 2. Example AML Instance Hierarchy

AutomationML, a “’store room” could well be a single System
Unit Class object, with attributes for the C'O4 and temperature
readings and without the need for these two sensors to be
modelled as separate (individual) entities. Other concepts
in AutomationML such as Roles and Interfaces cannot be
modelled at all in platforms like ThingsBoard, which support
relationships between assets, but not object-oriented concepts
such as encapsulation and abstraction.

The conversion process is less problematic between Au-
tomationML and OPC UA. The latter aims at exposing col-
lections of “objects” to clients, through an information model
defined in XML. These objects (referred to as nodes) contain a
range of attributes and are interconnected through references.
This enhanced flexibility allows for a more natural mapping
of AutomationML concepts to OPc—UA, and in fact a guide
for the conversion of AutomationML CAEX data to OPC-
UA XML was made available in 2016 [15]. However, we
also have to consider here how the conversion process works
for the Thingsboard platform, in order to ensure a level of
commonality in the design semantics. Next, we outline how
this is achieved. In fig. 2 we demonstrate an excerpt from a
manufacturing topology defined in AML. In this example, the
factory contains manufacturing areas represented as Internal
Elements without any accompanying information. Further,
logical groupings of components are also represented in the
same way (e.g. the “Processing Area” of the factory as a
logical grouping of complex components located together).
Manufacturing equipment components and devices are repre-
sented as instances of System Unit Classes (i.e. vendor-specific
equipment), which implement appropriate Interfaces. Each
Interface specifies the data attributes that we are interested to
capture in the system for each System Unit Class, irrespective
of its vendor or other capabilities. Therefore, we apply a design
restriction in the process of generating the AML, where if an
internal element does not implement an Interface, it means that
it is used merely for logical grouping purposes (we term such

Design AML equiva- | ThingsBoard OPCXML
element lent equivalent Equivalent
Physical equip- | SUC Device Object
ment instance implementing
Interface
Logical group- | SUC without | Asset Folder
ing of equip- | Interface
ment
Equipment at- | Interface Device Distinct
tributes attributes additionallnfo variable or
property property node
under Object
TABLET

CONVERSION RULES BETWEEN AML, THINGSBOARD AND OPC

AML entities as Groupings). In cases where an Interface is
implemented, then an operating component is being modelled
(termed as Devices).

To proceed with the conversion of the instance hierarchy
into the Thingsboard and OPC-UA platform, we developed
converter written entirely in Javascript, which loads and parses
the AML document, making use of recursive functions to
drill into the hierarchy and identify individual components and
their linkages to parent components (Fig. 3). The user simply
selects an AML file from their computer, uploads it to the tool,
and then clicks “Parse AML”. Once the parsing is complete
without errors, the user can click on the ”Generate” buttons
in the OPCUA-XML or Thingsboard sections to generate the
relevant transformations.

At parsing time, information obtained from each AML node
is stored into a memory-held linked list of objects. These
in-memory objects are defined by a class that holds all the
necessary information required to generate the related Things-
board or OPCUA XML entities in the conversion, i.e. internal
ID, parent object ID, AML-ID, OPC-ID, Thingsboard-ID,
object name, object type (Device or Grouping) and attributes
and their respective data types (held as JSON structures).
Thingsboard-ID and OPC-ID are initially null at the time of
parsing, and their values are updated as the user generates the
relevant conversions from the Ul The basic conversion rules
are shown in Table 1. During parsing, Groupings are added to
the Thingsboard platform as “Assets” and to OPCUA XML
as “Folders”. Similarly, Devices are added to both platforms’
corresponding “Device” and “Object” types respectively. For
Thingsboard, the “type” of each Asset is statically set to
”Factory Component”, while for devices, it is set to the name
of the Interface it implements. We use the same approach to
define the “description” element of Folder and Object entities
in OPCUA-XML. Interfaces determine the data attributes
which we wish to capture, however Thingsboard does not
afford a method for specifically defining these during design
(instead, attributes can be added as time-series in a completely
ad-hoc manner, at any time). Our approach here is to store this
information for each Device into the Thingsboard “addition-
allnfo” property. This property, provided by the ThingsBoard
platform for each Device type, allows the storage of string
data values. As such, we convert the attribute set of each AML
Interface into an appropriate JSON-formatted string value, and

ISI I3T AML Conversion Tool

Upload AML || Parse AML

0.Factory
-1.1. FEEdEr‘AreLlOd 1, parent:0)

Choose file

<?xml version="1.0" encoding="utf-8"7>
<CAEXFile
xmlns:xsi="http://www.w3.0rg/2001/XMLSche
ma-instance"

, parent 2)
parent 2)
arent:0

Generate OPCUA - XML

Enter the name of the new namespace iR e 1)

<?xml version="1.0" encoding="utf-8"7>
<UANDdeSet xmlns="http://opcfoundation. Drg/UA/ZUll/OB/uANudESEt xsd"
xmins:uax="http://opcfoundation.org/us/2008/02/Types.xsd"
xmIns:xsd="http://waw.w3.org/2001/XMLSchema”
xmins:xsi="http://www.w3.0rg/2001/xMLSchema-instance">
<Namespaceur1s>
<Urisurn: isi: example</Uri>

Generate ThingsBoard Entities

Obtam Thlngsboard credentlals

hingsBoard Entities

null.0. Factoryl (Factory Component)

0.1. Feederarea_l (Factory Component)
1.2. reedConveyor_1 (Factory Component)
2.3. Motor_1 (DCMotor) | Ad
2.4. startsensor_1l (PhotoSensor) | Add Device |
2.5. Endsensor_1 (PhotoSensor) | Add Device |

0.6. ProcessingArea_l (Factory Component) | Add Asset |
6.7. PunchingConveyor_1 (Factory Component) | Add Asset |
7.8. Motor_2 (DCmotor) | Add Device |
7.9. startSensor_2 (PhotoSensor) | Add Device |

7 in [Ererrr v

cndcancar 7 fDhatncancar)

Fig. 3. Screenshot of the AML to TB/OPC converter UL The user uploads
an AML file and the converter parses the hierarchy, making the necessary
suggestions about which elements to add and under what type (Asset or
Device)

store them in the “additionallnfo” property. This allows us
to be able to programmatically acquire the attribute names
defined in AML, and use them as timeseries data keys in
Thingsboard, ensuring consistency between the AML model
and the Thingsboard representation, and also enforcing data
integrity checks during insertion of new data. On the other
hand, OPCUA-XML requires the explicit definition of data
attributes at design time. As such, we use the information
from AML Interfaces, to directly specify equipment attributes
as distinct Variable or Property nodes under each Object
(including their data type).

Finally, with regard to maintaining the hierarchical rela-
tionships between AML objects, these are both supported
by Thingsboard and OPCUA-XML. Since we store each
entity’s Parent object ID at parsing, it is easy to replicate the
relationships in both conversion processes, using the “Rela-
tions” constructs in Thingsboard and "HasComponent” node
attributes in OPCUA-XML.

C. Execution Environment

The purpose of this architecture can be summarized as the
information and communication integration of heterogeneous
entities in a manufacturing environment. This is accomplished

through the adaption of the AutomationML and OPC UA
standards respectively. It can be stated that the first can be
classified as a standard of the information layer of RAMI
4.0 and the second as a standard of the communication layer.
Therefore, we have chosen to combine those two by integrating
AutomationML in OPC UA, thus using the Automation ML
for creating information models and communicating these
models via the OPC UA protocol. As described in the previous
paragraph, AutomationML is mostly used during the off-line
configuration phase. However, OPC UA is used during the
operating phase and constitutes the communication backbone
of the architecture. All the information described by the
AutomationML is exposed through OPC UA servers, which
collect data from various sources, real or virtual.

V. EVALUATING IN A HYBRID MANUFACTURING
ENVIRONMENT

A. Layout
For evaluating our approach we used a device from fis-
chertechnik as a physical device (fig. 4(a)). The device consists

of a conveyor for the transportation of the products and a
punching machine for stamping them.

(@) (b)

Fig. 4. (a) The punching machine and (b) its virtual duplicate

The electrical signals from/to the machine (cables) are
connected to an Arduino-based I/O slave, which converts them
to Modubs TCP packets and sends them to OpenPLC, which
is an IEC 61131-3 compliant open source industrial controller.
The PLC is hosted on a raspberry pi and it is managed via a
web interface. OpenPLC is accompanied by a Development
environment for creating programs consisting of Program
Organization Units (POU). Each POU can be programmed
in each of the five available IEC 61131-3 languages. The
controller supports Modbus protocol on top of TCP/IP stack.

The virtual manufacturing environment is implemented in-
side the Unity Game Engine. Everything inside the Unity’s
world is called Gameobject and it can be created, accessed
and edited via standard properties called Components. The
Components, which are attached to Gameobjects, define their
functional behaviour (fig. 4(b)). Prefabs are reusable assets
which can be used for the instantiation of Gamobjects before
or during runtime. We have already developed a prefab for
the punching machine by constructing its 3D model and
its animations, importing it into Unity and attaching the
proper Components for simulating its physical behaviour. The
behaviour of both the GameObjects and the Development

Environment can be further extended by writing C# scripts.
In addition, we have implemented an AutomationML parser
for importing and processing the AutomationML file and for
instantiating the proper Gameobjects.

B. Scenario

The aim of the scenario executed for the validation of the
aforementioned architecture is to demonstrate the success of
the integration of various manufacturing entities, both real and
virtual, in a way that ensures the integrity of the communica-
tion and information. Therefore, we used the AutomationML
Editor to produce an XML-based description of a physical
layout and afterwards this description was used by different
entities for, on different levels, for generating useful products.
Each entity interpreted the content of the description though
its own view and level of understanding. The [oT platform
created devices and assets, the AutomationML2OPCUA tool
created the address space for the OPC UA server, and the
AutomationML Parser inside Unity created GameObjects. The
executed scenario can be described in more detail in the
following steps.

o Creation of an AutomationML description of the manu-
facturing environment using standard and extended role
class libs.

o Conversion of the AutomationML description to an XML
based file compatible with OPC UA protocol.

o Launch of an OPC UA server that uses the XML based
file of the previous step for generating its address space.

o Conversion of the AutomationML description to Things-
Board’s entities.

o The AutomationML description is imported to Unity.

o The Unity AutomationML parser searches for Instance
Hierarchies (IEs) that implement a Role of an "OPC-UA
Server” or a "ModbusPLC”.

o The parser searches for IEs that have a specific Inter-
face, which is called “Unity Interface” and then looks
for children that implement the Role "OPCUAVar” or
”ModbusVar”. These roles have an attribute named refID
which points to the corresponding server. Moreover, they
hold details necessary for acquiring the data form the
server, like the NodelD in the case of OPC UA.

o The ”Unity Interface” has an attribute which holds the
name of the Prefab that Unity has to instantiate.

o Finally, Unity instantiates the corresponding prefabs
along with the necessary clients (Modbus or OPC UA).

VI. CONCLUSIONS

The paper deals with integration issues in the manufacturing
environment. Integration challenges remain high as there is a
large number of devices / equipment of high diversity that
need to interoperate and participate in a common automation
and control context. The advent of the Industrial Internet of
Things has further enhanced this challenge.

The paper presents a proposed approach for the integration
in the industrial environment utilizing AutomationML for shop
floor modeling, OPC UA for service oriented information

modeling, and an open source IoT platform as a core element.
The approach also enrolls a virtual environment implemented
via Unity 3D engine to enable factory floor emulation. The
paper presents the overall system architecture followed and
details both its configuration and run time execution. Some
first evaluation of the system has been performed and a
relevant scenario is presented.

Future work will be associated to further evaluation of
the proposed approach, targeted to its evolution towards the
Digital Twin concepts.

REFERENCES

[11 F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International journal of communication systems, vol. 25, no. 9, p. 1101,
2012.

[2] A. S. Lalos, A. P. Kalogeras, C. Koulamas, C. Tselios, C. Alexakos,
and D. Serpanos, “Secure and safe iiot systems via machine and deep
learning approaches,” in Security and Quality in Cyber-Physical Systems
Engineering. Springer, 2019, pp. 443-470.

[3] Y. Lu, C. Liu, I. Kevin, K. Wang, H. Huang, and X. Xu, “Digital twin-
driven smart manufacturing: Connotation, reference model, applications
and research issues,” Robotics and Computer-Integrated Manufacturing,
vol. 61, p. 101837, 2020.

[4] P. Adolphs, S. Auer, H. Bedenbender, M. Billmann, M. Hankel, R. Hei-
del, M. Hoffmeister, H. Huhle, M. Jochem, M. Kiele et al., “Structure of
the administration shell. continuation of the development of the reference
model for the industrie 4.0 component,” ZVEI and VDI, Status Report,
2016.

[5]1 S.-W. Lin, B. Miller, J. Durand, G. Bleakley, A. Chigani, R. Martin,
B. Murphy, and M. Crawford, “The industrial internet of things volume
gl: reference architecture,” Industrial Internet Consortium, pp. 10-46,
2017.

[6] Y. Zhang, G. Zhang, J. Wang, S. Sun, S. Si, and T. Yang, “Real-
time information capturing and integration framework of the internet
of manufacturing things,” International Journal of Computer Integrated
Manufacturing, vol. 28, no. 8, pp. 811-822, 2015.

[71 F. Tao, J. Cheng, and Q. Qi, “Iihub: An industrial internet-of-things
hub toward smart manufacturing based on cyber-physical system,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2271-2280,
2017.

[8] C. Alexakos, A. Komninos, C. Anagnostopoulos, G. Kalogeras,
A. Savvopoulos, and A. Kalogeras, “Building an industrial iot infras-
tructure with open source software for smart energy,” in 2019 First
International Conference on Societal Automation (SA). 1EEE, 2019,
pp- 1-8.

[91 S. Choi, K. Jung, B. Kulvatunyou, and K. Morris, “An analysis of

technologies and standards for designing smart manufacturing systems,”

J Res Natl Inst Stan, vol. 121, pp. 422-433, 2016.

S. Faltinski, O. Niggemann, N. Moriz, and A. Mankowski, “Automa-

tionml: From data exchange to system planning and simulation,” in 2012

IEEE International Conference on Industrial Technology. IEEE, 2012,

pp. 378-383.

R. Drath, A. Luder, J. Peschke, and L. Hundt, “Automationml-the

glue for seamless automation engineering,” in 2008 IEEE International

Conference on Emerging Technologies and Factory Automation. 1EEE,

2008, pp. 616-623.

A. Liider, L. Hundt, and A. Keibel, “Description of manufacturing

processes using automationml,” in 2010 IEEE 15th Conference on

Emerging Technologies & Factory Automation (ETFA 2010). 1EEE,

2010, pp. 1-8.

G. N. Schroeder, C. Steinmetz, C. E. Pereira, and D. B. Espindola,

“Digital twin data modeling with automationml and a communication

methodology for data exchange,” IFAC-PapersOnLine, vol. 49, no. 30,

pp. 12-17, 2016.

C. Koulamas and A. Kalogeras, “Cyber-physical systems and digital

twins in the industrial internet of things [cyber-physical systems],”

Computer, vol. 51, no. 11, pp. 95-98, 2018.

“Din spec 16592: Combining opc unified architecture and automation

markup language,” DIN Spec, 2016.

(10]

[11]

[12]

[13]

[14]

[15]

