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E d g e  o f  t h e  C l o u d

Capturing Urban 
Dynamics with Scarce 
Check-In Data

Location-based services are an impor-
tant part of our daily interactions 
with mobile and desktop services. 
Services such as Foursquare and 
Facebook let users geo-annotate 

information about a venue, using spatial and 
temporal context dimensions. These interac-
tions result in large exploitable datasets describ-
ing patterns of human interactions with their 
environment. Researchers have been conducting 
studies into the use of such datasets and recent 
work in this area suggests that check-ins convey 

not just that a user has visited 
a place but that he or she finds 
it to be a place of interest and 
worth mentioning (for more 
information, see the sidebar).1,2

Given the potential of such 
datasets to convey areas of 
interest, an application that 
mines check-in data, automati-

cally extracting “local knowledge” in the form 
of urban rhythms and locations of true interest, 
might prove invaluable to tourists visiting a city. 
Here, we describe our analysis of Foursquare 
check-in data for a city in Greece, showing that 
although the data generated by the citizens is 
scarce, we can use it to build a good model of 
the city’s dynamics. We further discuss how this 
information can be used to guide visitors in the 
city or provide innovative services for city in-
habitants using the cloud.

The Importance of Local Knowledge
In the tourism domain, local knowledge has 
long been branded the ultimate source of in-
formation for visitors, and its sharing has 
been the subject of discussion for years. Visi-
tors and tourists rely heavily on third-party 
information relating to sights and areas of in-
terest. Traditional information sources include 
guidebooks, where the subjective opinion of 
an expert is used to describe a location of in-
terest. Malin Zillinger, however, has argued 
that guidebooks restrict tourists, artificially 
popularizing locations and discouraging visits 
to unmentioned sites.3 Furthermore, Benjamin 
Lucca Iaquinto found that this effect is wors-
ened by editorial interventions that influence 
the guidebooks’ final content.4

Online user-generated content websites, 
such as Wikitravel and Trip Advisor, also re-
flect the subjective opinions of participants 
that might well have been influenced by 
guidebooks, given that 60.6 percent of on-
line users have been found to use guidebooks 
during a visit.5 Even though online media is 
regarded as collaborative and thus likely to 
present a more accurate picture, Ulrike Gret-
zel and Kyung Hyan Yoo found that reviews 
therein play a much less significant role in 
terms of determining what to do (32.5 per-
cent), where to go (27.7 percent), and when 
to go (26 percent).5 Their results show that 
the most popular use of online reviews was 
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for deciding where to stay (77.9 per-
cent).5 Just under half of online site 
users look for information from local 
destination (44.6 percent) and state 
tourism websites (29.7 percent), al-
though these might more accurately 

reflect a local’s knowledge. Ryen 
White and Georg Buscher showed 
that relying on information from 
other tourists isn’t optimal, because 
nonlocals tend to select venues that 
lead to lower-quality experiences.6

The reviews likely to be shared 
on tourism websites do little to help 
tourists uncover hidden gems or 
learn about what’s truly worth visit-
ing. The sharing of local knowledge 
is thus still elusive, despite advances 

A nastasios Noulas and his colleagues conducted a large-

scale study involving 700,000 users, collecting data for 

100 days that represented approximately 12 million Foursquare 

check-ins.1 Their data is indirectly observed, because it’s accessed 

through Twitter messages generated from the Foursquare 

application and thus only reflects the behavior of Foursquare 

users who have connected the application to a Twitter account. 

Their work focuses on the diurnal breakdown of check-in times 

and venue categories, as well as temporal dynamics and spatial 

variances between check-in actions. The authors demonstrate 

distinct potential in inferring information such as transitions 

between venues. 

Zhiyuan Chen and his colleagues performed a similar study, 

analyzing location-tagged check-ins from Twitter.2 They found 

that users tend to exhibit periodic behaviors, while the social 

linkage, geographic, and economic constraints seem to affect 

user mobility patterns. 

Justin Cranshaw and his colleagues attempted to cluster such 

data into areas of particular social activity in cities.3 The data 

collected in their analysis was again indirectly observed through 

Twitter. Through interviews with 22 location-based-services 

users, they found that check-in data could be used to represent 

known divisions in communities and reveal subtle changes in the 

local social patterns.

Jessica Benner and Cristina Robles used Foursquare data to 

explore the trending behavior of places in three cities in the 

US.4 They uncovered distinct patterns of trending in each city 

and argue that such analysis can help urban analysts under-

stand what’s happening in different cities, thus helping business 

owners better manage their businesses.

Jonathan Chang and Eric Sun used Facebook Places check-ins 

to build a predictive model based on previous check-ins, friends’ 

check-ins and day, demographics, and time, with a target of 

predicting the user’s likely next check-in location.5

The semantics of check-ins have only recently been investi-

gated in academic literature. Janne Lindqvist and his colleagues 

studied the context under which people check in and discov-

ered that participants don’t check in to places they consider 

embarrassing (such as fast-food restaurants) or uninteresting or 

that they visit frequently.6 This shows that Foursquare check-

ins indicate positive disposition toward a location and signify 

its importance (it’s a place to be seen or is an interesting place). 

Sameer Patil and his colleagues found location sharing was 

driven strongly by projections of personal taste and image, such 

as a desire to indicate that a user likes a place or wants to appear 

cool and interesting.7 Other reasons, such as financial incen-

tives or promoting events, were much less frequently stated 

as reasons for sharing. Similar findings were also discovered by 

Henriette Cramer, Mattias Rost, and Lars Erik Holmquist, who, in 

a qualitative study of in-depth interviews and surveys, report the 

emergence of “social and identity-driven uses, such as sharing 

lifestyle, events, and information that’s interesting and enhances 

self-presentation.”8
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in technology. Bearing in mind the 
difficulty in capturing and sharing 
knowledge from locals, we explore 
a system for automatically inferring 
such knowledge by mining check-in 
data.

Capturing the  
Rhythm of a City
Our work focuses on Patras, Greece—
a medium-sized Mediterranean city 
with approximately 200,000 inhabit-
ants. Here, we provide some informa-
tion about the local context and known 
urban dynamics, which vary distinctly 
from the typical 9-to-5 work week. 

This background information is helpful 
in interpreting the results that emerged 
from our dataset.

Local Context
Most employees in the public and pri-
vate sector work Monday through Fri-
day. Working hours are 7 a.m. to 3 p.m. 
for the public sector. Banks are open 
for business between 9 a.m. and 3 p.m. 
(although employees stay later). Most 
private-sector office workers work from 
9 a.m. to 5 p.m. Shop opening hours 
are regulated by law and are Monday 
through Friday, 9 a.m. to 9 p.m., with 
a break between 2 and 5:30 p.m. Shops 

are open Saturdays (9 a.m. to 2:30 p.m.) 
but are closed on Monday and Wednes-
day evenings. Several self-employed 
professionals (lawyers, civil engineers, 
and so on) also follow the shop opening 
hours, although they regularly work on 
Monday and Wednesday evenings and 
not on Saturdays. Finally, most shops 
and businesses are closed on Sundays.

Although the population’s work 
schedule is widely fragmented, busy 
days in the city are typically Tuesday, 
Thursday, and Friday, when shops are 
open in the morning and evening. We 
refer to these as “full days,” and we re-
fer to Monday and Wednesday as “half 
days” and Saturday and Friday as the 
“weekend.”

Objective Data Verification
Although local expert knowledge is a 
good starting point, we wanted to en-
sure that we could validate our analysis 
of data captured through Foursquare 
against an objective baseline. We 
sought other datasets indicative of hu-
man activity in an urban environment 
and considered data on vehicular traffic 
and air pollution.

Air pollution measurements have 
been found to coincide well with known 
city patterns.7 Our data was obtained 
from the public repository of the Hel-
lenic Ministry of Environment, Energy 
and Climate Change (atmospheric pol-
lution data—www.ypeka.gr/Default.
aspx?tabid=492&language=el-GR [in 
Greek]). Although this data includes di-
urnal hourly measurements of several 
pollutants, we considered only carbon 
monoxide (CO) and nitrogen oxides 
(NOx), because they’re the two pol-
lutants most closely related to traffic.8 
We analyzed data from 2009, obtained 
from the city center air quality monitor-
ing station, so the data (Figure 1) would 
match the available traffic volume data, 
which we gathered from a 2009 feasi-
bility study for adding a tram system 
to the public structure infrastructure in 
the city of Patras.9

Figure 2a shows the locations of 
measurements taken during the tram 

Figure 1. Diurnal cumulative (a) nitrogen (NO2 and NO) pollutant and (b) carbon 
monoxide (CO) level averages.
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feasibility study and the location of 
the air quality monitoring station. The 
traffic data covers a much smaller pe-
riod than the atmospheric data but is 
still useful. The blue markers indicate 
locations where measurements were 
taken during single 24-hour periods, 
while pink markers indicate locations 
where measurements were taken during 
an entire week (stations 140 and 141). 
The air quality monitoring station is 
marked with an “X”. The average diur-
nal volume measurements are shown in 
Figure 3, with the volumes for stations 
140 and 141 depicted separately.

As is evident from the analysis of this 
data, the city exhibits a measurable 
rhythm, which coincides with our lo-
cal knowledge as described in the previ-
ous section. Distinct activity peaks are 
noted in the morning and afternoons, 
coinciding with shop opening hours. 
Half-days display less pollution in the 
evenings compared to full days, when 
the shops are open. On weekends, 

Saturday is busy in the morning but less 
so than other full or half-days. Sunday 
seems quiet throughout, showing some 
increased activity in the evening.

The atmospheric pollution data is 
partially backed up by the traffic vol-
ume data, although the traffic dataset 
is much less extensive, because the 
coverage period is just 24 hours for all 
measurement stations (Thursdays and 
Fridays during the months of March 
and April 2009) except two, which 
were measured over a week. Still, the 
twin peaks expected from the analysis 
of atmospheric data are also present in 
the traffic volume data.

Foursquare Data Analysis
In contrast with other studies,10,11 we 
aimed to focus on a particular location, 
explore the quality of data that could be 
obtained, and consider how this data 
could be used to describe and share us-
ers’ interactions with their environment 
and with others.

Data Capture
To ensure we didn’t miss check-ins that 
weren’t tweeted (see the sidebar for in-
formation about Twitter check-ins), we 
devised a way to collect data directly 
from Foursquare’s API. For 100 days 
between July and September 2012, we 
set up “listening posts”—fixed locations 
in the city, covering the commercial and 
social areas of interest, based on our lo-
cal knowledge (Figure 2b). For each lis-
tening post, we queried the Foursquare 
API every 30 minutes to retrieve the 
names of nearby businesses and their 
check-in data. The information for each 
venue (time of query, current check-ins, 
and total check-ins) was saved in a da-
tabase. By querying every 30 minutes, 
we were able to approximate check-in 
time since the API didn’t provide this 
information. This temporal resolution 
seemed adequate, considering Four-
square’s check-in timeout policy, which 
keeps a user checked into a place for a 
maximum of three hours or until he or 

Figure 2. Objective data for verification and Foursquare check-in data in Patras: (a) traffic volume measurement stations and the 
air quality monitoring station in the area of coverage of (b) Foursquare data-collection listening posts.
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she checks in to another venue. As such, 
our data doesn’t show distinct check-
ins but rather how many people appear 
to be checked into a venue at any point 
in time.

Using a discovery process (and not a 
static places list) meant that if a new 
place was added in the period of study, 

it would also start to be included in 
the results. In total, we included 282 
venues, of which 249 actually showed 
check-ins during our data-collection 
period. The remaining 33 venues were 
present in Foursquare; however, no 
check-ins had occurred until the end of 
the data-collection period of our study. 

In total, we collected 889,043 “appear-
ance” reports for the 249 venues. We 
calculated an estimate of average check-
ins per day by dividing the sum of dif-
ferences in the total number of check-
ins for each venue at the start and end 
of the period by the number of days  
(m = 145.82 check-ins per day). This 
estimate shows that use of Foursquare 
isn’t widespread in the city and that the 
check-ins can be considered scarce.

Considering the penetration of 
smartphones in Greece (approximately 
25 percent),12 the local cost of 3G con-
nections (made significantly less afford-
able because of the economic crisis and 
cuts), the lack of widespread adoption 
of free Wi-Fi, and the general low adop-
tion of Foursquare usage worldwide (31 
percent of mobile users active on social 
networks are on Foursquare),13 the low 
number of daily check-ins isn’t surpris-
ing. Nevertheless, we wanted to explore 
whether urban dynamics could be un-
covered from such scarce data.

Diurnal and Daily Analysis
Figure 4 shows the total appearances, 
broken down by hour of day and by 
weekday in the city. The emergent pat-
tern seems realistic—that is, activity is 
much reduced in the early hours of the 
day, while peaks around mid-day and 
mid-evening are in line with the well-
known busy periods when the shops are 
open and the city is buzzing.

In terms of daily breakdowns, we 
can see that the data follows the atmo-
spheric pollution patterns quite closely. 
Correlations are found between diur-
nal Foursquare check-ins and traffic 
volume (R(24) = 0.757, p < 0.001), NOx 
(R(24) = 0.621, p < 0.001), and CO (R(24) 
= 0.688, p < 0.001) pollutants. Full days 
exhibit greater-than-average activity, 
while half days are on par with the av-
erage in the mornings and are below 
average in the evening. Saturdays show 
increased activity in the morning, and 
Sundays are quiet, apart from evenings. 
Peaks occur slightly later than pollution 
and traffic data in the morning and ear-
lier in the evening, which is expected, 

Figure 3. Traffic volume in 2009 for the city of Patras.
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because people converge in the city 
first, then start “checking in” to places; 
in the evening, check-in activity gives 
way to transport activity.

The three-hour check-in timeout 
might delay the decline of check-in 
volumes by some amount. However, 
because the API doesn’t provide the 
precise time that each check-in was 
cancelled, we can’t definitely tell what 
effect this has on our data. Still, a reso-
lution of three hours should be appro-
priate for describing urban dynamics in 
larger daily segments, instead of hourly 
granularity, particularly for tourism-
related applications (discussed later).

Based on the pollution data, we ex-
pected full days to display similar lev-
els of check-in activity. However, we 
can clearly see that Thursday shows 
distinctly increased activity in the eve-
nings compared to other full days. A 
possible explanation is that as the week 
draws closer to the weekend, people are 
more inclined to go out, so they check-in 
more often. Indeed, a careful look into 
our data shows that Thursdays exhibit 
greater activity throughout the day, 
while Friday only shows increased activ-
ity in the morning compared to Tuesday.

Weekend behavior varies distinctly 
from full and half days. Saturday and 

Sunday seem less busy than expected 
in the evenings. This is in line with 
our atmospheric pollution findings. 
It can also be attributed to the sum-
mer weather when our study took 
place, because people are known to 
gather outside the city center for nights 
out (the city has two popular seaside 
summer “evening” suburbs, Rio and 
Vrachneika, which are approximately 
10 km east and west of the city center).

Venues and Business Types
Foursquare uses a multilevel category 
system to let users characterize venues. 
Our data clustered around five default 
top-level categories (Food, Nightlife, 
Outdoors, Shops & Services, and Arts 
& Entertainment). When analyzing the 
data per category, we found that the 
top-level categories were too generic 
for meaningful clustering (for exam-
ple, Food contains both restaurants and 
coffee places, but activity in these venue 
types is very different). As such, we de-
cided to use our own top-level catego-
ries to group the low-level categories for 
each venue into clusters.

The examination of the diurnal 
breakdown of appearances by category 
depicts a realistic pattern of results 
(see Figure 5). The coffee and nightlife 

venues follow a similar two-peak pat-
tern with nightlife spots peaking later 
in the evening. Their morning popu-
larity can be explained as most bars 
and cafés in the city operate as all-day 
bar-café venues. The appearances in 
shops peak and fade as might be ex-
pected based on the shops’ opening 
hours and the restaurant peaks in the 
evening (Greeks are known for eating 
later at night). Outdoor locations seem 
more popular in the evenings, which is 
natural in the summer. The infamous 
Mediterranean “coffee culture” seems 
to be well captured in our data, with 
Cafés topping the chart (25,663 ap-
pearances), followed by Bars & Night-
life (17,921).

We were also surprised to find that 
in the Food category (11,758 appear-
ances), fast food outlets were by far 
the most popular (3,174) subcategory. 
This could be indicative of the low av-
erage age of location-based-services 
users or even a byproduct of the cur-
rent economic crisis the country faces. 
Outdoor locations (7,602), Shop & Ser-
vice (6,673), and Arts & Entertainment 
venues (662) were the least popular cat-
egories for checking in.

The distribution of appearances 
for all venues in our study exhibits 

Figure 5. Venue categories and total appearances by day of the week.
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power-law behavior, with only a few 
venues taking up the majority of 
check-ins. In fact, the top 20 percent 
of all venues in terms of appearances 
(50 venues) take up 69.2 percent of 
the appearance distribution. A cor-
relation exists between the sum of 
appearances in a place and the pre-
cise total number of its check-ins as 
reported by Foursquare at the end of 
our study (R(249) = 0.78, p < 0.01). 
This shows that a popular place will 
generally continue to be popular, 
although we’ll need to re-examine 
this behavior once we’ve collected a 
year’s worth of data, which will show 

behavior change over time, because 
it’s well known in the city that the 
popular areas for hanging out change 
between winter and summer.

Practical Implications
Encouraged by the fact that even such 
scarce data can indeed provide an ac-
curate depiction of the city’s rhythms, 
we started considering the practical 
implications in making this knowl-
edge ubiquitously available. Our aim 
was to make this information practi-
cally digestible by the average person 
in the form of a useful service that 
would support interactions with their 

surrounding urban environment, re-
gardless of the available computing 
equipment (or lack of) in the con-
text of a user. As such, we designed 
a cloud-based service approach 
(Figure 6), which removes the com-
putation, connectivity, and data man-
agement load from ubiquitous clients 
such as a mobile device.

Our architecture is inspired by 
the application of cloud computing 
and cloudlets in ubicomp scenarios, 
as envisioned by Mahadev Satyana-
rayanan.14 In this architecture, our 
cloud-based service aggregates infor-
mation from other cloud sources, such 

Figure 6. A cloud-oriented system approach for sharing captured local context. Elements yet to be implemented appear in 
brackets.
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as social media and city-wide sensors, 
and produces knowledge based on 
it. The aggregated knowledge can be 
passed on as a variety of services—
GIS-based websites, context-aware 
mobile apps and mobile Web apps, 
augmented-reality apps, and even 
adaptive infrastructure (such as street 
lighting that can act as low-fidelity 
displays). Locally placed cloudlets, 
distributed throughout the city as part 
of the public service infrastructure, can 
act as proxies to minimize latency and 
communication issues with the aggre-
gation service.

We’ve already started implementing 
this architecture. The first step after 
collecting our data and implement-
ing a knowledge-generation service 
was to create a webpage display-
ing all known venues in the city and 
graphically depicting their “hotness.” 
We’re currently just using Foursquare 
data, but our code also supports the 
gathering of other information, such 
as Facebook likes and tags. Thus far, 
we’ve refrained from using other 
data, because we’re still investigat-
ing how it relates to Foursquare data 
and the general perception of venue 
“importance.”

Using a heatmap overlaid on the 
map, the “hot” areas in the city can 

be made dynamically visible, and this 
service can show current information 
(where people are currently checked 
in) and historically derived informa-
tion at the same time (which areas 
are typically hot on a Tuesday after-
noon). Furthermore, we can identify 
and present users’ trending venues 
(that is, those with the greatest rate 
of increase in total check-ins) or the 
most popular places, either globally or 
for the current spatial and temporal 
context (see Figure 7a). We’ve also de-
veloped a mobile Web app, affording 
a list-based instead of map-based ap-
proach to disseminating information, 
which is more suitable for small screen 
devices (Figure 7b).

More interestingly, our current 
work focuses on a technique to visu-
alize this information in augmented 
reality (see Figure 7c), with the goal 
of investigating how the combination 
of paper maps and information on lo-
cal social context (real-time check-ins 
and historical data visualization) can 
help city visitors uncover and explore 
stimulating venues. In addition, we’re 
expanding our work to create auto-
mated and adaptable guided tours, 
based on such collected data, which 
will take tourists through the most 
interesting parts of a city, given the 

current day and time. We also plan 
to provide navigation guidance using 
the concept of the “most interesting” 
route instead of the current “short-
est path.”

Finally, we’re interested in apply-
ing this information to an adaptive 
infrastructure (such as city lighting), 
which can guide people toward the 
“hot” areas of a city at night (or, con-
versely, help them avoid it) by color-
fully illuminating various streets and 
areas or modulating light output. 
Performing the heavy computation 
and data aggregation in the cloud lets 
us focus on designing interaction and 
information retrieval modalities for 
the various platforms, without wor-
rying about resources and perfor-
mance issues.

Our research is still underway, 
but clearly, cloud-sourced, 
scarce human-physical 
environment interaction 

data—such as Foursquare check-in 
information—can be effectively used 
to represent the social “buzz” of an 
urban environment. Scarce check-in 
data is adequate for building an ac-
curate picture of urban dynamics over 
time. To our knowledge, we’re the first 

Figure 7. Cloud-driven services: (a) a map-based temporally contextual visualization of city data on a regular website ( venue 
suggestions are on the right); (b) a mobile Web app showing recommendations for venues in the current spatial and temporal 
context; and (c) a prototype dynamic augmented reality interface to the city data built on an Android device (with the Unity + 
Vuforia software development kit).

(a) (b) (c)
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researchers to examine check-in data 
mined directly from Foursquare in-
stead of indirectly through other so-
cial media, such as Twitter. We’re also 
the first to objectively validate the cor-
relation of check-in data against other 
datasets, instead of relying on subjec-
tive user feedback.

A cloud-oriented infrastructure 
for disseminating this knowledge 
can drive a variety of services from 
the same data, in both high- and 
low-resource devices and device 
ecologies. We now aim to explore 
how the inferred knowledge can af-
fect citizens’ interactions with the 
city, when presented to the users in a 
ubiquitously available manner, such 
as on desktop and mobile applica-
tions, through augmented reality, or 
through large projections in the ur-
ban environment. 
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