
Improving Hydroponic Agriculture through
IoT-enabled Collaborative Machine Learning

Andreas Komninos1,2, Georgios Georgiadis1,2, Andreas Koskeris2, and John
Garofalakis1,2

1 University of Patras, Rio, 26504, Greece {akomninos,garofala}@ceid.upatras.gr
2 “Diophantus” Computer Technology Institute and Press

{ggeorg,koskeris}@westgate.gr

Abstract. This paper presents ongoing work in the development of
a scalable hydroponics monitoring system. Our system leverages using
wireless IoT technology and applies machine learning techniques on gath-
ered data to provide recommendations to agronomists. Hydroponics is a
method of growing plants in a water based nutrient rich solution system,
instead of soil. By monitoring the parameters of the solution and the en-
vironmental parameters inside the greenhouse, farmers can increase the
production while decreasing the need for manual labor. Multiple net-
worked sensors can measure these parameters and send all the necessary
information to an Internet of things (IoT) platform (i.e., Thingsboard)
in order the farmer to be able to control and adjust current operating
conditions (e.g. environmental controls) and plan the nutrition schedule.
Machine Learning can be used to detect anomalous operating conditions
and to provide operational recommendations to assist farmers. The nov-
elty presented in our system is that data contributed by multiple farming
sites can be used to improve the quality of predictions and recommen-
dations for all parties involved.

Keywords: Internet of Things · Precision Agriculture · Hydroponics ·
Machine Learning.

1 Introduction

The Internet of Things (IoT) is an active research area where sensors and smart
devices facilitate the provision of information and communication. In IoT, one
of the main concepts is wireless sensor networks in which data is collected from
all the sensors in a network characterized by low power consumption and a wide
range of communication. Wireless sensor networks (WSNs) consist of multiple
sensor nodes in a wireless communication-based environment. Each sensor node
is to detect physical phenomena such as temperature, humidity, and moisture
with limited energy and memory. WSNs are the combination of embedded system
and wireless communication which allows data transmission among the sensor
nodes over ad-hoc wireless networks. The heart of each WSN node is the micro-
controller which processes readings from its own sensors and/or readings from
adjacent nodes.
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IoT systems have found significant application opportunities in the agricul-
tural sector, however, a recent review of IoT applications in agriculture has shown
that research in this area is not yet fully developed [4]. For agricultural appli-
cations, IoT devices consist of sensors to measure soil properties (e.g. moisture,
electrical conductivity), environmental conditions (e.g. temperature, humidity,
rainfall) and ambient light conditions (e.g. irradiation, light levels). All these
parameters relate closely to the growth of plants and their monitoring enables
precision agriculture, with associated savings in energy and water consumption,
as well as reduction of fertilizer and chemicals used to support plant growth. A
more recent trend in agriculture involves the move away from soil-based farming
towards hydroponic agriculture. In this mode of cultivation, a greenhouse con-
tains rows of substrate material (e.g. rockwool) on which plants are placed. Since
this substrate contains no nutrients, it is continuously watered with a nutrient-
rich solution. Hydroponic agriculture requires careful balancing of the nutrient
solution contents against outdoor and indoor environmental conditions, and is
thus subject to impact from even very small fluctuations away from optimal
conditions. On the positive side, it is attractive to farmers because maximizes
yield and provides yield level guarantees, while allowing for less use of pesticides
and other control chemicals, leading to very high quality products produced in
less land than would otherwise be required. On the negative side, hydroponic
agriculture is far more energy-demanding compared to traditional farming [5].
The scope of this paper is to the application of IoT systems in precision hydro-
ponics, which is currently understudied compared to the rest of the agricultural
IoT.

2 Related work

Hydroponic agriculture is a natural fit for IoT system applications. Setting aside
back-yard and small installations, professional hydroponic sites require constant
monitoring and control to achieve optimal growth conditions. In typical in-
stallations, automation is provided in terms of indoor environmental controls
via HVAC systems and automated window or shading mechanisms. However,
the nutrient feeding schedule is typically set by human experts (agronomists),
through a feedback cycle of manual monitoring of selected plant growth (“wit-
ness plants”). Agronomists manually measure the growth parameters of witness
plants, and adjust the feeding schedule for the whole site accordingly [8]. This,
however, is a suboptimal solution. In larger sites, the microclimate can vary sig-
nificantly across the site. Due to leakages, blockages and other technical issues,
irrigation can be uneven. Therefore, impacts measured on witness plants, may
not evenly apply to all the site, and growth problems may go unnoticed until it
is too late. In this respect, the IoT can offer automated precision monitoring in
real time, and across an entire site.

Previous work on IoT-enabled hydroponic systems has focused mostly on
system properties and architecture (e.g. [10]), with most research focusing on
monitoring specific types of sensor values, such as water quality (e.g. [6]). In
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[7], the authors focus on the performance of the MQTT protocol, showing that
server load and throughput is not significantly affected by large numbers of IoT
nodes (1000 in this case). This demonstrates that large installations can bene-
fit from IoT deployments without needing to rely on resource-rich servers. IoT
applications using simple temperature and humidity sensors only, demonstrate
that significant savings in electricity (22%) and water consumption (38%) can
be obtained [9]. Similarly, in [3] and [2], a system where agronomists could de-
fine logical rules for the operation of a system is presented, using a continuous
feedback loop to the agronomist, so they can observe the effect of the rules they
set. However, in such systems, the weak point here remains the need for heavy
agronomist involvement in the process [1]. To address this problem, [12] propose
a fuzzy logic control system to automatically adjust system operation, in order
to maintain predetermined operational parameter specifications (in this case,
solution electrical conductivity and PH). In [11], the use of machine learning
is proposed in two ways, to assist hydroponic installations. Firstly, it is used
to obtain an indication of witness plant growth levels by analysing images of
witness plants, replacing the need for manual measurement. Secondly, it is used
to model and forecast optimal lighting policy conditions for the site, based on
previous data. So far, this is the only example in literature where data has been
used in an assistive manner, i.e. to automatically propose operation guidance to
agronomists.

3 System overview

For this system, we developed an embedded wireless sensor network for a hy-
droponic greenhouse in the area of Mesolongi in Western Greece, producing
tomatoes (Fig.1). Contrary to most previous research, the system is applied to
a large commercial installation. The conceptual diagram of our system is shown
in Fig.2 and consists of the wireless sensor network inside the greenhouse which
transmits all the necessary environmental parameters to an Internet of things
(IoT) platform.

3.1 Hardware and virtual Sensors

The system consists of a variety of off-the-shelf indoor and outdoor sensor types.
All sensors operate between 3.3 - 5.0 Volts. The following hardware sensors are
used (e.g see Fig.3):

– Indoor environment sensors: A DHT-11 sensor is used to temperature and
humidity levels. We also use a light level and solar irradiation sensor.

– Substrate sensors: To measure nutrition solution parameters on the sub-
strates, we use a capacitative soil moisture sensor and soil temperature sen-
sor.

– Outdoor sensors: For external environmental conditions, we use mast-mounted
wind speed, wind direction, light level and waterfall sensor.
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Fig. 1: The hydroponic site of our system, with a total cultivation area of
12, 000m2 and a site office and packing area of 400m2
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Fig. 2: System architecture depicting site hardware and software platform com-
ponents

– Water quality sensors: A PH and electric conductivity sensor is used on the
water outflow collection points.

Furthermore, we support what we term “virtual” sensors, which are essen-
tially data obtained from external APIs or other internal data sources:

– Virtual weather station: We use the OpenWeathermap.org API to obtain
current and forecasted meteorological conditions in the area. This data is
used for interpolation with outdoor sensor data, and to obtain weather fore-
casts from established climate models.

– Nutrition scheduling: The agronomist maintains an accurate record of the
nutrition schedule, including watering times and duration, and nutritional
content composition, in the form of spreadsheet files. These data are fed to
the system at regular intervals.

3.2 Sensor integration and connectivity

We bundle multiple sensors on Arduino Uno boards, building what we call ”sen-
sor packs” with various sensor configurations. The various sensor packs connect
via XBee modules based on the IEEE 802.15.4/Zigbee Wireless Personal Area
Network (WPAN) in a star configuration, to coordinator nodes. Coordinator
nodes aggregate and forward data to the server, via wired Ethernet connections.
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The following wireless sensor pack configurations are supported (e.g. Fig.3
left and Fig.4):

– Plant row packs: These support multiple (6) soil moisture sensors and, op-
tionally, a soil temperature sensor. These sensors are positioned along indi-
vidual plant rows.

– Indoor climate packs: These support the temperature, humidity, light level
and irradiation sensors. They are placed in various equidistant locations
across the site.

– Outflow packs: These support the PH and electric conductivity sensor and
are placed in the outflow collection points across the entire site.

We also support the following wired Ethernet pack configurations (e.g. Fig 3
right):

– Weather station packs: One Arduino board is used to integrate all the out-
door sensors for the site. This sends data directly to the server using a wired
Ethernet connection.

– Coordinator packs: Each coordinator node collects data wirelessly (via Xbee)
from multiple other sensor packs (plant row, indoor climate and outflow. Its
role is to collect, store, pre-process and transmit the data to the server, using
a wired Ethernet connection. Because of the heavier computation demand,
coordinator packs are integrated using the Arduino Mega board.

Fig. 3: Schematics for the plant row and outdoor weather station sensor packs

3.3 Manual data collection

The site agronomist takes regular observations from the various witness plants
in the site. These observations are collected using a mobile device, running a
web-based application to collect the relevant data (foliage, plant height, stem
width, fruit size and state etc.). Data is uploaded directly to the server using a
wireless (Wi-Fi) connection.
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Fig. 4: Deployed plant row sensor pack

3.4 IoT data management platform

For the collection of data, we use the open-source ThingsBoard IoT platform.
This platform is configured to model the site as a set of assets (there are two
greenhouses, each one being an individual asset), devices (each sensor pack or
virtual sensor is modelled as a single device) and operators with various roles (site
supervisor, agronomist). The platform offers the ability to visualise the data at
an aggregate or individual sensor basis (using custom-designed data visualisation
dashboards, Fig. 5), and to establish alerts for operating conditions exceeding
specified thresholds. The sensor packs and virtual sensors communicate data to
the platform using HTTP REST APIs. Further from the data collection platform,
ML modules for training models and performing predictions are also hosted on
the server. These modules are currently under development, but the aim is to
feed their output back into the platform, and integrate their output on the user’s
dashboard, in numeric and graphical form.

4 Monitoring Actuator Operation

The hydroponic site is equipped with a proprietary climate control system (by
Priva S.A.) which is used to automatically drive various control elements that
help maintain optimal indoor climate parameters, as required. These include
ventilation fans, overhead curtains, moisture sprayers and CO2 pumps, which
are activated depending on specific rules set by the agronomist. This proprietary
system does not have an open interface, therefore it is not possible to access
data produced by it from a third-party system such as ours. However, strategic
positioning of sensors can be used to infer the system operation.
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Fig. 5: Sample view of the hydroponic sensor dashboard provided by the Things-
Board IoT platform

(a) Under-curtain sensor pack (b) Over-curtain sensor pack

Fig. 6: Positioning of indoor environment sensor packs to detect system operation
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Fig. 7: Data captured by the over-curtain and under-curtain indoor environment
sensor packs

As an example, we demonstrate the data acquired by two indoor environment
sensor packs, positioned over, and under the overhead curtains (Fig. 6). In this
example, the green line shows the under-curtain sensor values, while the blue line
shows the over-curtain values. As can be seen in Fig. 7, when the solar irradiation
intensity spikes (blue line, top chart), the automatic curtains begin to operate,
therefore “smoothing” the effect of intense light in the greenhouse. Simultane-
ously, because of the high light intensity and resulting increased temperature,
humidity begins to drop rapidly, hence the moisture sprayers help maintain the
humidity levels within better tolerances. By capturing this behaviour, we are able
to detect system operation events, as well as threatening emergent conditions in
the greenhouse during operation.

5 Machine Learning Experiments

Our work regarding the integration of ML recommendation components is ongo-
ing. However, in this section, we demonstrate an example of how ML can provide
advanced insights and recommendations to hydroponic site agronomists, based
on the prediction of ambient light levels in the greenhouse. We use a deep neural
network model on a six day dataset, ranging between 27/4/2019 and 2/5/2019
(144 cases), with the layer node count {3, 5, 5, 5, 3}, ReLU activation function
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and ε = 1.0−8, ρ = 0.99. Input features are the hour of day ([0, 23]), and re-
ported cloud coverage level ([0%, 100%]) from the virtual weather station, while
the predicted value is the ambient light levels in the greenhouse in lux units
([0−,+∞)). Raw data is aggregated to obtain their hourly average. Data pre-
processing includes the normalisation of lux values to a range between [0,1].
The deep learning model can produce arbitrary positive or negative values. The
latter, in our case, make no logical sense (since lux values cannot be below 0).
Hence we post-process the predictions to transform negative values to zero. To
evaluate the model performance, we use k-fold cross validation (k = 10) with
random sampling, and also use a leave-one-out approach. The results are shown
in Table 1 and Fig. 8. Interestingly, just two features (cloud cover, hour of day)
are reasonable predictors for light intensity (between 5.7% and 11.4% RMSE),
despite inaccuracies caused by plant foliage, worker and equipment movement
and the OpenWeatherMap API model inaccuracy. Further, lux data in this anal-
ysis comes from a single, uncalibrated sensor, whose values are not cross-related
with those of nearby sensors.

Table 1: Deep learning model evaluation
Evaluation approach Root mean squared er-

ror
Correlation (Spear-
man’s ρ)

k-fold cross validation 0.114(σ = 0.091) 0.877(p < 0.01)

Leave-one-out 0.057(σ = 0.086) 0.892(p < 0.01)

6 Conclusions

We have presented the architecture and on-going deployment effort for an IoT-
enabled hydroponic installation. Our work aims to be amongst the first to pro-
duce recommendations to facilitate the workload of professional agronomists,
using ML techniques. A further innovation which we are in the process of imple-
menting, is to enhance the quality of predictions by collecting data from multiple
contributing sites. In this way, a community of hydroponic installation opera-
tors can benefit from the knowledge contributed by others, and therefore solving
the ”starting problem” associated with the inability to obtain recommendations
when no, or little data, has been obtained for the site. A further advantage of
this approach is that it may minimize the need for IoT equipment installation,
as fewer sensors on each site will be necessary to obtain accurate monitoring and
prediction results.
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Fig. 8: k-fold cross validation Spearman rank correlation
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4. Gómez-Chabla, R., Real-Avilés, K., Morán, C., Grijalva, P., Recalde, T.: IoT Ap-
plications in Agriculture: A Systematic Literature Review. In: Valencia-Garćıa, R.,
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