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ABSTRACT
The growth ofWeb 2.0 services has lead to an increase in the volume
of user-generated content in the form of online user reviews. Web
platforms offering users the ability to evaluate the services of hotels
have increased in popularity, as a large percentage of travellers
offer their feedback or read hotel reviews to assist their decision
making process. Users usually do not have time to go through the
sheer volume of available hotel reviews and would prefer to read
the most useful ones, whereas review usefulness is subjective and
depends on the reader’s needs and preferences. Therefore, the need
for automatically detecting hotel review helpfulness arises.

In this paper, we propose the use of features that capture both
textual content and review metadata for predicting hotel review
helpfulness of Greek and English reviews. A novel approach for
representing text as a word embeddings-based vector is introduced
and review association with certain hotel service aspects is mapped.
Evaluating the performance of our approach using Machine Learn-
ing and Neural classifiers yields promising results for the review
helpfulness classification task.

CCS CONCEPTS
•Computingmethodologies→Classification and regression
trees; Supervised learning by classification; Information ex-
traction; Neural networks.

KEYWORDS
User-generated content, Review helpfulness classification, Machine
learning, Neural networks, Natural language processing
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1 INTRODUCTION
Much of today’s travel and tourism activity planning takes place
online. The decision process for travellers is heavily influenced by
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the reviews left on various websites and apps by other travellers.
Reviews can include a range of information depending on the plat-
form they are being shared on, but users frequently are called upon
to provide an overall score (e.g. 8/10), itemized scores (e.g. 4/5 stars
for cleanliness), recommendations (e.g. "good for families") and
free-form text of their opinion.

Reviewing is a popular activity for users of online travel planning
services. It is also heavily promoted by the services themselves, in
order to solicit as much information about places as possible, for the
benefit of other platform users. On one such service (TripAdvisor),
contained 859 million reviews and opinions in 2019 alone [3]. On
one hand, the rich ecosystem of users and opinions can ultimately
benefit the whole community. On the other hand, the popularity
of reviewing activity is such that the sheer volume of information
available to users is simply impossible for the user to digest in its
entirety. Problems in online reviews relate to the number of reviews
a user is prepared to read in order to form an opinion, the validity
of the reviews in terms of their recency and trustworthiness of
the reviewer (e.g. genuine travellers vs. fraudulent reviewers, ex-
perienced vs. inexperienced travellers), the quality of information
contained therein (volume and detail of information), the user’s per-
sonal preferences (e.g. being particularly concerned about specific
aspects of a venue, such as cleanliness or quietness) etc.

Overall, in order to provide an effective service, a travel platform
must present to their users not just all reviews, but those which are
likely to be most helpful to the user. Some platforms implement this
by allowing users to vote for the helpfulness of a review, but this is
a manual process and could lead to helpful reviews being ignored.
In any case, the notion of "helpfulness" is fluid - for example, it’s
not clear to a reader if past readers of the review indicated it as
"helpful" while reading them before the actual trip, or after their
trip was completed and a visit to the venue had actually taken place.
What makes for a "helpful" review is not strictly defined and thus
can be difficult to assess.

In this paper, we present research towards the automatic classi-
fication of online tourism reviews in terms of their "helpfulness".
We introduce a range of metrics designed to capture aspects of
trustworthiness and information quality in a review, and perform
experiments in a real-world dataset derived from TripAdvisor. Our
main contributions are:

• Applying both text-based and non-textual features for the
review usefulness classification, on reviews written in both
the Greek and English language, using a common approach
for both languages.

• Using a text vector based on word-embeddings for repre-
senting review texts, instead of text-based features such as
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Table 1: Factors affecting the perceived helpfulness of
tourism business reviews

Review Aspect Review Factor References

Author Identity disclosure [13], [4], [12]
Expertise [13], [10], [12]
Reputation [13], [4]
Author rating distribution [6]
Author gender [10]
Author locality [12]

Review metadata Review rating [13], [10], [20], [12]
Review age [9]
Review time on homepage [9]
Hotel star class [9]
Manager response [10]
Review helpful votes [20]

Review text Text readability [13], [6], [10], [12]
Text sentiment [13], [6],
Text Reading enjoyment [13]
Text length [13]

unigrams or bigrams. The idea behind this, is that a docu-
ment should be semantically related to the sum of its words.

2 RELATEDWORK
The usefulness of online tourism reviews has been investigated in
several recent publications. Examining some of the most highly
cited works concerning review helpfulness determinants in tourism
businesses (e.g. hotels and restaurants), we find a range of factors
deemed important at a different level in each study, but overall
there appears to be some commonality across most of these (Table
1). It’s important to note that in each study, the results seem heavily
dependent on the dataset examined by the authors. Most datasets
cover only one or two cities, and hence, depending on the type of
visitors this city receives, it is likely that the significance of determi-
nants varies according to population characteristics and experience.
In [19] it is also shown that review linguistic characteristics, se-
mantic features, sentiment and usefulness can vary significantly
depending on the platform where reviews are posted. Furthermore,
in [8], it is shown that aspects of the service rated in a review can
significantly affect the "helpfulness" rating, depending on the ho-
tel class the review relates to. For example, text content relating
to amenities is more important when a 4 or 5 star hotel is being
reviewed, while lower-class hotel reviews are more helpful if they
report on aspects such as convenience and value. Therefore, previ-
ous work can be considered relatively limited in generalisability.
On the other hand, in [7] a meta-analysis of review helpfulness fac-
tors literature across a range of domains (e.g. tourism, e-commerce,
online services) indicates that most of the determinants in Table 1
are likely to have a significant role across multiple domains. These
include Review Metadata (e.g. rating, extremity, age); Reviewer-
related characteristics (e.g. reputation, identity, social network);
Review readability; Syntactic features; Semantic features; Lexical
features (e.g. unigrams, bigrams, spelling errors).

More recently, there have been a few attempts to use machine
learning (ML) approaches in order to automatically classify hotel
and tourism-related business reviews in terms of their helpfulness
[5]. This approach contrasts previous work, which relied mostly on
the application of logistic regression models, which, however, have
the advantage of being able to explain factor importance, compared
to the black-box approach used in ML. Although a substantial body
of work exists for other product reviews (e.g. as sold on Amazon),
hotel review helpfulness has received less attention. In fact we were
able to identify only a handful of papers that present related results.
The earliest example is [16] where data scraped from TripAdvisor
are used to classify reviews using the JRip algorithm and achiev-
ing a mean AUC score of 0.82. Features used included metrics on
author reputation, text content, social activity of authors and text
sentiment. The choice of these features was not grounded in other
work. In [15], authors use text sentiment analysis, word emotional-
ity, part-of-speech tagging and a range of text statistics as features
using several classifiers, and find that emotionality significantly
improves classification performance (>0.85 AUC, using RF-SMOTE).
In [11], again a range of classifiers is employed with features ex-
tracted from a much larger dataset (1.1m TripAdvisor reviews from
5 US cities). In this study, Random Forests outperform all other
classifiers (mean AUC = 0.906). Examining RF performance using
features from specific categories only, they report that using just
features related to the review author, the performance is very close
to using all of the features together. On the other hand, work in [17]
demonstrated that reasonable performance (F1 = 0.7565, using RF)
can be achieved using linguistic features of the review text alone,
extracted through NLP techniques. Finally, in [14], the authors com-
bine textual and photo content of reviews to predict helpfulness.
Text features are extracted with an LSTM algorithm, while photo
features are extracted using CNN. The combined feature set is then
used in an LSTM-based model. The results demonstrated that using
text features alone, an F1-score of 0.70 is attainable, while adding
the photo features improves performance to 0.78.

In our paper, we rest upon the recent observation of [8] that
commentary and ratings on different aspects of service can influ-
ence the helpfulness of a review. We introduce features based on
this concept, and use a range of other features found in previous
literature as well, in order to predict review helpfulness using ML-
classifiers. We also investigate the performance of classification for
reviews in two languages, English and Greek, something which
has not been attempted previously. Finally, another novel element
in our work is to introduce the representation of a document as a
single vector based on the use of word embeddings.

3 METHODOLOGY
3.1 Data and preprocessing
For this paper, we scraped the TripAdvisor website for hotel reviews
across the whole of Greece. We collected 59,792 reviews in Greek
and 65,243 reviews in English. The data collected included the
review title and text, additional text (tips), review rating, travel
type, additional ratings on individual hotel aspects, number of
reviews posted by the author, number of helpful votes received by
this review, and number of helpful votes received by the author for
all their reviews.
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Past literature emphasises the importance of author reputation
for helpfulness labelling.We calculated the average helpful votes per
review (H-Ratio) for each author. We label "helpful" those reviews
that meet all of the following conditions: a) Received 4 or more
helpful votes; b)the author’s H-Ratio ≥ 0.5, and; c) the author’s
H-Ratio ≤ the review’s helpful votes.

As a result, we identified 2,316 helpful reviews in Greek and
3,457 helpful reviews in English. To create balanced datasets for
training and testing, we randomly selected an equal number of
unhelpful reviews from each language.

Finally, we pre-processed review text, in order to remove URLs,
hashtags and user mentions. Based on our previous work, we re-
placed emoticons that express a positive emotion with the word
"posemoji" and negative emotion with "negemoji". Consecutive
punctuation marks are replaced by corresponding labels (e.g. "..."
→ "multidot", "!!!!"→"multiex"). Finally, we identified negation-
markingwords in each language (e.g. in English, "not, don’t, wasn’t")
and replaced them with the labels "grnot" and "not" respectively.
This pre-processing is necessary for the sentiment analysis used in
the features described in the next section.

3.2 Selected Features
3.2.1 Text-based features. Since text statistics such as length and
word count do not appear to play major roles in helpfulness accord-
ing to literature, we emphasised use of qualitative and semantic
features. The following were selected:

• Word Embeddings: We use the word2vec approach to model
review text into a vector space. For that purpose, we opted
to use fastText [1] pre-trained word vectors, with dimension
300, for both languages. The vector space produced by these
models, includes words in such amanner so that semantically
related words are placed in close proximity. We merge the
review title, main text and additional text in tips into one
document for each review. All the word vectors of words
occurring in the text, are added together and then normalised
by dividing the resulting vector by its length. To create the
vectors, we take into account the term occurrence rather
than term frequency.

• Adjective ratio: Using a Part-Of-Speech tagger for each of
the two languages, we identify the percentage of adjectives
over the number of words in the whole text of a review.

• Readability: To assess review readability, we use theGuiraud’s
R metric. This is calculated as the number of different parts-
of-speech in a text, divided by the square root of the total
number of words in the text.

• Subjective sentences: A sentence in the review text which ex-
presses a positive or negative opinion is termed a subjective
sentence. We use a previously developed sentiment analysis
algorithm for English and Greek [18] to identify the number
and the percentage of subjective sentences over the total
number of sentences in the text.

• Aspect-based similarity: As per [8], reviews can be more
helpful if they pertain to specific service aspects of the hotel.
We selected the aspects of "Price", "Service quality", "Location,
Rooms", "Cleanliness", "Sleep quality" and the generic aspect
"Hotel" as concepts that a review could contain. We then

calculated word embedding vectors for each of these aspects
(in both languages) and used the cosine similarity measure to
identify how "close" each review is to each of these aspects.

3.2.2 Additional features. Although literature emphasises the im-
portance of author-related metrics, we chose not to employ these,
since we are interested in the objective usefulness of a review based
on its content, rather than the identity or reputation of its author.
Thus, we incorporated the following features:

• Rating: the overall rating given to the hotel by a reviewer
• Additional Ratings: the number of ratings to individual hotel
aspects given by the reviewer

• Travel type: The self-reported type of trip the review re-
lates to, encoded as [0=None, 1=Alone, 2=Couple, 3=Family,
4=Friends, 5=Business]

4 IMPLEMENTATION
We designed and implemented our method for use as a web API
for automatically detecting the helpfulness of reviews. The system
consists of three main phases; (a) text pre-processing, (b) features
calculation, (c) review classification. In the text pre-processing step,
text goes through all the pre-processing tasks that we described
earlier. During the features calculation phase, the feature vector of
the review is created by calculating all the features. Text is split into
tokens and for each unique token search is performed in the appro-
priate pre-trained word vectors model, based on the text’s language,
in order to construct the text vector. Aspect-based similarities are
then calculated, using cosine similarity.

Next, the sentiment polarity of each sentence is determined us-
ing the sentiment classification algorithm. Positive and negative
sentences are added together to form the subjective sentences fea-
ture, while also the percentage of subjective sentences is calculated.
After identifying the part-of-speech for each word of the text using
a POS tagger, Guiraud’s R and percentage of adjectives is computed.

Finally, during the last phase, the feature vector of the review
(including non-textual features) is fed into an SVM classifier that
uses pre-trained models for each language, which have been trained
using the balanced Trip Advisor hotel review datasets. For the SVM
classifier, we opted to use the libsvm implementation in the php-ml
[2] library, and optimized its parameters using grid search.

5 RESULTS
5.1 Experiment 1 - basic ML classifiers
To evaluate the performance of our method for predicting the help-
fulness of online hotel reviews, we conducted a series of experi-
ments using several ML classifiers on the balanced Trip Advisor
datasets for both languages. The Greek dataset contains 4,632 hotels
reviews, whereas the English dataset consists of 6,914 hotel reviews.
Both datasets contain an equal number of heplful and non-helpful
reviews. We used three ML algorithms in order to assess their per-
formance in the helpfulness classification task, as per [11]; SVM,
Decision Tree and Random Forest. The RapidMiner environment
was used to perform the relevant modelling and evaluation tasks.

For selecting the appropriate hyperparameters, we deployed a
grid-search optimization process over 20% of the training set from
each language, to avoid overfitting. The parameters determined by
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this process were then used to perform classification in the whole
dataset, using 10-fold cross validation. In Table 2, we present the
parameters for each combination of algorithm and dataset.

Table 2: ML algorithm parameters

Dataset Algorithm Parameters

Greek Reviews
SVM Kernel: rbf; C : 0.251; γ : 0.167; ϵ :

0.01
Decision
Tree

Criterion: Gain Ratio; Max. Depth: 10;
Confidence: 1.0E − 7; Min. Leaf Size:
6

Random
Forest

N. Trees: 22; Criterion: Gini Index;
Max. Depth: 90

English Reviews
SVM Kernel: rbf; C : 15848.9; γ : 0.002;

ϵ : 0.01
Decision
Tree

Criterion: Accuracy; Max. Depth: 10;
Confidence: 1.0E-7; Min. Leaf Size: 1

Random
Forest

N. Trees: 61; Criterion: Information
Gain; Max. Depth: 29

After pre-processing the text and computing the features using
the implementation presented earlier, we feed the ML-Classifiers
using all the available textual and non-textual features, to predict
review helpfulness of hotel reviews for both languages. The evalu-
ation metrics we used to assess classification performance are the
Accuracy, Precision, Recall and F-score of the classification. In Table
3, we present the average evaluation metrics by ML algorithm for
the classification of hotel reviews, but for the rest of this section
we focus on F-score, to compare directly with [11], and Accuracy,
since our dataset is balanced. As we can see, for Greek reviews,
SVM performs better than DT and RF achieving an average Accu-
racy and F-score of 79,77% and 79,84%, respectively. DT is second
best coming close to the performance of SVM, while SVM and DT
outperform RF by a healthy margin. For English reviews, results
show that, as before, SVM achieves the best performance with an
average Accuracy of 80,46% and F-Score of 80.48%, with RF coming
second and DT being outperformed by both SVM and RF.

Table 3: Evaluation Metrics By ML Algorithm

Greek Reviews
Algorithm Accuracy Precision Recall F-score
SVM 79.77% (σ = 1.78%) 79.90% (σ = 1.81%) 79.77% (σ = 1.78%) 79.83%
DT 78.65% (σ = 1.58%) 78.85% (σ = 1.57%) 78.65% (σ = 1.57%) 78.75%
RF 73.53% (σ = 2.09%) 73.68% (σ = 2.07%) 73.53% (σ = 2.09%) 73.60%

English Reviews
Algorithm Accuracy Precision Recall F-score
SVM 80.46% (σ = 1.65%) 80.50% (σ = 1.67%) 80.46% (σ = 1.65%) 80.48%
DT 75.07% (σ = 1.71%) 75.14% (σ = 1.72%) 75.07% (σ = 1.71%) 75.10%
RF 77.23% (σ = 1.56%) 77.44% (σ = 1.57%) 77.24% (σ = 1.56%) 77.34%

Next, comparing the classification performance of each algo-
rithm per language, results show that SVM’s performance is similar
for both languages, with slightly better performance for English
reviews. DT performs better for Greek reviews by a margin of ap-
proximately 3.6% in F-score compared to English reviews. On the
other hand, RF achieves better results for the English language with
the difference in F-score being approximately 4.7%

The next step of the evaluation process, was to perform classifi-
cation using different sets of features in order to assess the effect
certain features have in classification performance. For that pur-
pose, we chose to examine classification performance by using two
different combinations of features; only the text-based features
and only the non-textual features (rating, additional ratings, travel
type). As before, we followed the same procedure for selecting the
parameters of each algorithm in order to perform classification
using the aforementioned feature combinations for both languages.

Fig. 1 presents the F-score of the classification of Greek reviews
for each algorithm, using all features, text-based features and non-
textual features only. As we can see, classification using only the
text-based features yields worse results for all classifiers compared
to using the whole set of features, with the biggest difference ob-
served for the DT classifier. On the contrary, when applying only
the non-textual features performance is either on the same level
(SVM, DT) or better (RF) compared to using all features.

Figure 1: Classification performance of ML algorithms by
feature selection - Greek reviews

Figure 2: Classification performance of ML algorithms by
feature selection - English reviews

The corresponding results for the classification of English re-
views, are presented in Fig. 2. Results show that using only text-
based or non-textual features has a diminishing effect on the classi-
fication performance. Contrary to results regarding Greek reviews,
text-based features achieve better performance than non-textual for
each classification algorithm. The combination of both text-based
and non-textual features results to the best performance.

5.2 Experiment 2 - Neural classifiers
Further from these results, we also employed a more modern ap-
proach by exploiting the deep learning capabilities offered by the
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Tensorflow framework (using Keras and Tensorflow 2.1 over RStu-
dio). Our evaluation metric is accuracy, since we have a balanced
dataset and do not directly compare with previous results.

We started with the evaluation using only the textual compo-
nents of the review. This was done by analysing three scenarios in
each language, using the main review text only, the review title only
and finally a concatenation of the title, main text and additional tip
text (where present). Text pre-processing involved tokenizing the
text, removing Greek and English stopwords, symbols, numbers
and punctuation, using the quanteda R package for NLP. Next, we
created a dictionary of the top N words in the texts (by frequency)
and generated integer-encoded tensors for each text through this
dictionary. Our network consists of one embedding layer with the
dictionary length as the input size and 16 output units, a 1-D global
average pooling layer, a further dense layer with 16 units (RELU
activation) and a 0.5 dropout to avoid overfitting. The output layer
consists of 1 unit (since we are doing binary classification) with
sigmoid activation. An ADAM optimiser is used, and binary cross-
entropy is used as the loss function during training.

First we experimented with the size of the dictionary. As can
be seen in the model training history in Fig. 5, a larger dictionary
yields better accuracy for both languages, hence we proceeded with
500 words as the dictionary size.

Using a single training-test run with an 80-20 stratified split on
the dataset (and splitting the training dataset again 80-20 to evaluate
training performance), the best results in terms of accuracy are
with either the main review text alone or all text (All text EL:69.87%,
EN:75.11%; Review only EL:69.98%, EN:74.89%; Title only EL:50.00%,
EN:59.99%). Performance is consistently better with English. Based
on these results, we performed a k-fold cross validation (k = 10)
on the "All text" scenario. The results are quite similar to the single
run (EL: µ = 69.97%,σ = 2.59%; EN: µ = 75.40%,σ = 2.00%).

Next, we examine the classification performance using only nu-
meric features. We selected the trip type, review rating, Guiraud’s
R and the aspect-based similarities of review text. Trip type and
review rating were one-hot encoded due to their categorical nature.
The network consists of a dense input layer with the same size as
the number of features, a 32-unit dense hidden layer (RELU activa-
tion) and a single-unit output layer. An ADAM optimiser is used,
and binary cross-entropy is used as the loss function.

The first run was a single training-test run with an 80-20 strat-
ified split on the dataset (and splitting the training dataset again
80-20 to evaluate training performance). A k-fold cross validation
(k = 10) revealed a considerable performance improvement over
text-only for Greek, and comparable performance for English (EL:
µ = 77.05%,σ = 1.58%; EN: µ = 73.81%,σ = 2.04%).

Next, we attempted to combine the text and numeric inputs using
a complex model, which receives the two types of dataset as input,
performs processing via straight DNN or word-embedding based
DNN analysis and merges the results. The architecture is shown
in Fig. 4. The results are more favourable for the English dataset
(EL: µ = 75.60%,σ = 2.53%; EN: µ = 79.16%,σ = 1.25%). Overall,
as can be seen in Fig. 3, the results are mixed depending on the
language of each dataset. For Greek, best performance is captured
using the numeric data only, while the treatment of English reviews
benefits from the combination of numeric and text data. One plau-
sible explanation for this is that English and Greek languages may

benefit from different pre-processing steps (e.g. stemming, lemma-
tization) which we did not employ, and which may be hindering
the effectiveness of the text analysis elements.

Figure 3: DNN model results

Figure 4: Complex DNN model architecture

6 DISCUSSION AND FUTUREWORK
In this paper, we presented a method for predicting the helpfulness
of online hotel reviews using a range of text-based and non-textual
features. We employed features that capture the textual content
of the review as well as review metadata in order to automatically
predict the helpfulness of reviews written both in Greek or Eng-
lish. We evaluated the performance of our approach in the review
helpfulness classification task using ML and Neural classifiers and
experimenting with different feature sets.

Results from ML classifiers, show that SVM performs better
than RF and DT for both languages, with the best performance
observed for English reviews, achieving promising F-Score and
Accuracy values for review helpfulness classification. Text-based
features have a bigger impact on the classification performance
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Figure 5: Model training history with various vocabulary sizes

for English reviews, whereas non-textual features perform better
for Greek reviews. In the majority of cases the effectiveness of
combining both sets of features is apparent, suggesting that the
word embeddings-based representation of the text vector captures
accurately the semantic context of the text.

Experiments using Neural classifiers, confirm that features based
on the textual components of reviews lead to better performance
for English compared to Greek, while the numeric features we
employed offer a considerable performance boost to Greek reviews
yielding better results compared to combining both feature sets
or using only textual features. The most effective feature selection
for English reviews is the combination of text-based and numeric
features. In the future, we plan to conduct further experiments with
larger and more diverse datasets in order to further assess the effect
application of different feature sets and classification algorithms
have in the prediction of hotel reviews helpfulness.
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