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ABSTRACT
In this paper, we present a novel system aimed at replacing large-
display information dashboards in industrial control rooms, with
a flexible, dynamic and reconfigurable immersive virtual reality
environment, which can afford high mobility without constraints,
to remote engineers. In this context, we investigate the role of se-
mantic and spatial cues for delivering event notifications within
the control environment, and present empirical evidence from a
controlled laboratory study, simulating a marine industrial envi-
ronment. We find that spatial and semantic cues can both offer
significant benefits to operator awareness and their combination
can significantly improve the findability and response time to par-
ticular information in the extended information space surrounding
the user.

CCS CONCEPTS
• Human-centered computing → Empirical studies in ubiq-
uitous and mobile computing; Ubiquitous and mobile com-
puting systems and tools; Virtual reality.
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1 INTRODUCTION
Industry 4.0 is heralded as the next evolution in industrial systems,
which introduces the concept of cyber-physical systems (CPS) as an
integration of hardware, software and people, aimed to improve the
flexibility and robustness of industrial processes through increased
digitisation [27]. In its core, Industry 4.0 focuses on the intercon-
nection of sensors, devices, machines and processes, creating an
Industrial Internet of Things (IIoT). The aggregation of informa-
tion from various industrial components allows the construction of
Digital Twins (DT), which are real-time virtual representations of
a physical object, system or process [20]. Digital Twins allow the
precise tracking of industrial systems performance and behaviour,
and, since the process is entirely based on Internet technologies,
this monitoring can be carried out from any location.

The remote monitoring ability afforded via Digital Twins is a
stark contrast to the industrial control rooms that are typically
associated with industrial processes, and which are comprised of
fixed installations (e.g. a dedicated control or operations room).
Furthermore, because of the ability to digitally access information
for any industrial component, DT-based monitoring environments
can be fully digital and information, in the shape of digital instru-
ments, can be flexibly arranged and re-configured to suit individual
workspace and human operator contexts. A typical example of this
process is the digital dashboard, often configured to fit a single
or multiple desktop monitors (e.g. as in [30]). Digital dashboards
can also be configured to fit wall-size displays, but a shortcoming
of both approaches, is that human operators still need physical
access to stationary equipment of appropriate size, in order to carry
out their job. Mobile device oriented versions of such digital dash-
boards can afford truly mobile remote access to information, but
the limited screen size reduces the amount of information that can
be intelligibly displayed, and interaction demands increase as the
human operator is required to "flick-through" multiple screens of
information, in order to find desired components [31].

Another possibility for remote and flexible monitoring of indus-
trial systems through the digital twin concept, is the use of virtual
reality technology (e.g. [36]). Contrary to desktop or mobile-based
systems, VR systems offer an infinite display area extending spher-
ically around the user, presenting a fully synthetic environment,
which can thus be completely and flexibly reconfigurable. Com-
pared with large, or multi-monitor displays, use of a VR headset
does not require extensive workspace, or costly installations [32].
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Additionally, VR systems can be highly mobile at the cost of some
display resolution, through the use of smartphone-based VR head-
sets. These systems comprise of a headset (viewer), in which a user’s
smartphone is inserted. The smartphone screen is used to display
stereoscopic visuals by splitting the screen in two, which the user
can view as a fully immersive 3D image, with all the benefits of
depth perception.

In the context of this paper, we explore the use-case of naval
vessels (large ships) as increasingly important application of Indus-
try 4.0, not only as part of a value and supply chain, but mostly as
systems themselves. Commercial vessels are, in essence, complex
floating industrial installations, requiring a large and experienced
crew to coordinate multiple subsystems (e.g. electrical distribution
and power generation, mechanical propulsion, navigation, dock-
ing, loading, refuelling etc.). As such, they are prime candidates
for increased automation and may benefit substantially from in-
tegrating IIoT and DT technologies, as a means to simplify and
improve on-board operations [11]. Further, commercial ships travel
worldwide and there is an expressed need for their base of op-
erations to be aware of potential problems, in order to schedule
maintenance, repairs and itineraries. In the future, it is very likely
that we will witness the proliferation of unmanned (drone) ships,
just as we are currently witnessing the proliferation of civilian and
military unmanned aerial vehicles, meaning that effective remote
monitoring and control of their operations will become of essence
[38]. Drone ships are already emerging as solutions for high-risk
operations (e.g. the SpaceX sea-based landing platform), but due
to the potential savings to the maritime industry, they are set to
become mainstream in areas such as freight transport.

Motivated by the exciting opportunities that VR systems can
afford in Industry 4.0 monitoring scenarios, and particularly by the
potential that can be afforded for the maritime industry, our paper
presents a novel VR-based monitoring environment for ships. Such
a system could be used both on-board, affording crew members un-
inhibited monitoring ability from anywhere on the ship (in the case
of manned vessels), and also remotely, affording remote engineers
and operations staff a real-time connection with a ship and all its
systems (in the case of both manned and unmanned vessels). Our
virtual environment extends 360 degrees around the user, which
means that emergent events displayed in instruments outside the
user’s field of view, may not be easily noticed. In this paper, we
focus specifically on the presentation and interaction of users with
notifications about emerging events in this rich information space.

2 PREVIOUS WORK
A wealth of literature exists on the topic of interruptions and at-
tention management in computer systems. We present first a basic
background to contextualise our paper within the literature, and
then discuss recent related work that focuses on attention manage-
ment in VR environments.

2.1 Attention management
Modern life is rife with technology-based interruption, in both
personal and professional activity contexts. Interruptions may be
related to the user’s current main activity, or they may be related to
other events taking place simultaneously. In all cases they may be

considered as unpredictable, external events, which have a negative
impact on the user’s focus on their primary task [35]. Interruptions
during use of a computer system may be generated by multimodal
notification alerts which are completely unrelated to the current
task, alerts that relate to tasks being attended to in parallel to the
main task, or reviewing alerts, which can be used to remind users
of actions related to the current task, or to maintain focus on the
current task [19]. In a taxonomy of interruptions presented in [1],
interruptions that relate to the current main task are termed as in-
terventions, while others can be considered to be intrusions. Further,
interruptions can be categorised according to their nature as in-
formational or actionable, and thus, by combination, interruptions
can be classed as a) informational interventions, b) actionable inter-
ventions, c) informational intrusions and, d) actionable intrusions.
A further subtype (system intrusions) is used in [1] to distinguish
interruptions caused by the IT equipment being used and relates
to its available resources or state. Focusing on the paper’s goal,
we are mostly concerned with the intervention category, which
supports a user’s main task. In this context, notifications that raise
interruptions contribute to performance detriments, but may also
be extremely necessary, since intense focus on a task (or object)
may lead to inattentional blindness to important information about
state changes displayed elsewhere [34]. A notification can provide
more value to the user, if it provides spatial cues about the location
of the secondary task to which the user’s attention is diverted, and
also semantic cues, which may include colour-coded information
(e.g. for urgency) and textual descriptions of the event [9].

2.2 Virtual reality for data visualisation
Space is essential for the organisation, distribution and manage-
ment of information in physical, as well as digital workspaces,
helping users make better sense of complex and interrelated infor-
mation [3]. An extension to the use of large digital displays is the
use of VR technology, which can offer unprecedented abilities to
manipulate and arrange digital information [23, 25]. Examples of
the use of dynamically reconfigurable displays for VR can be seen in
map-based applications [2, 5, 16] or immersive analytics [37]. Past
investigation of the use of VR spaces to provide large information
layouts has uncovered a range of issues related to their use. These
issues include the limited interaction modalities, problems with
mobility in the real world, graphics quality of the visualisations
and physiological issues (e.g. eye strain, motion sickness) related
to interacting with immersive environments [8, 24, 26].

VR has been proposed as a fundamental tool in the context of
Industry 4.0 [10, 18]. Its use varies from data visualisation and
exploration [6, 7], visualisation of equipment operation [12, 22]
and training [21, 28]. In [4, 13, 14, 33, 39], VR has been used to
immerse users in faithful reproductions of actual control rooms, in
order to investigate ergonomics issues or address training needs.
We haven’t, however, been able to find related literature on the
use of VR as a substitute for industrial monitoring environments,
such as the large displays and multi-monitor workstations placed
in dedicated rooms.
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2.3 Attention management in virtual
environments

Attention management in VR spaces is another area of research
which has received little attention in recent literature. In [15] the au-
thors discuss that notification systems implemented in commercial
VR headsets follow the simple solution of presenting information
in a 2D pop-up panel, floating at a fixed distance from the user’s
viewpoint. It is argued that this display style may not necessarily
translate well to the immersive sensation sought in VR applica-
tions, but in our case, complete immersion is not a high-priority
target. The authors propose some fundamental design guidelines
from their findings, including the need to reduce visual search, to
provide dismissible notifications, and to make notifications easily
distinguishable from other synthetic world objects. In [29], the
authors examined multiple notification panel placements in the
virtual world. Amongst the design options, a videogame-like head-
up-display panel scored best for noticeability, reaction time, and
not missing notifications. This was also verified in a later study by
[17]. In [40], alternative options for presenting notifications in a
more immersive manner are presented, which may provide inter-
esting inspirations since the notification may be accompanied (or
wholly replaced) bymanipulations of the world objects (e.g. through
dimmed lighting everywhere apart from the object relating to the
notification).

2.4 Summary
While VR has been proposed as an essential technology for Industry
4.0 applications, its use to replace the traditional control-room
environment or large-display dashboard monitoring systems has
not yet been investigated in literature. Previous work demonstrates
the potential of VR as a display technology that can increase the
ability of users to explore and comprehend complex information
spaces. Past work in VR notification design provides basic guidelines
about the design of visual alerts in such spaces. This background
sets the theme for our paper, which is to investigate the use of
VR technology to extend the information space in an Industry 4.0
monitoring context, and examine notification design to increase
operator awareness in such environments.We present the following
hypotheses to be examined in the rest of the paper:

H1: The addition of a spatial cue can have an effect on the par-
ticipants response time to notifications in a VR control room envi-
ronment.

H2: The response time to notifications can be affected by the
angle between the participant’s viewpoint and the event-raising
instrument at the time of notification issue.

H3: The response time to important notifications can be affected
by semantic cues for notification priority (colour coding).

3 SYSTEM DESIGN
Our system is based on three major components (Figure 1). For
the collection, processing and management of IoT data, we use an
instance of the open-source ThingsBoard platform. The platform al-
lows for the effective management of incoming datastreams via mul-
tiple protocols (e.g HTTP, MQTT, OPC-UA), and the pre-processing
of data through rule-based customisations (e.g. to remove corrupt

or redundant data or to transform data before storage). The IoT plat-
form has the ability to publish incoming datastreams (with or with-
out processing) to the Apache Kafka distributed event streaming
platform, which we employ in order to provide subscription-based
updates to the data consuming application used to power monitor-
ing dashboards. Data pushed to the Kafka stream can be packaged
with a range of metadata, including the instrument it concerns,
whether the data value is out of normal range, the level of critical-
ity of the event and so forth. This additional data is provisioned
through the ThingsBoard rule engine by processing incoming data
as it arrives at the platform. For the presentation of information
to human operators, we wrote a custom application in Unity (us-
ing C#) which is able to consume data from the Kafka stream and
present this information in the form of digital instruments (gauges,
readouts, text etc.) across multiple desktop spaces (e.g. a video-wall
or a multi-monitor workstation), and in the form of a VR space,
which is the subject of our paper.

Figure 1: Overview of our system architecture.

3.1 VR Control Room
The VR control room is designed as an octagonal walled space
extending 360 degrees around the user’s view, with each wall dedi-
cated to displaying instruments related to a specific function of the
vessel (Figure 2). One of the walls doesn’t display any instruments,
but is covered by a video stream panel, so that streaming video from
a camera can be displayed (Figure 3). The user is positioned in the
centre of the room. The user can move their head to look around
the room but the user’s position in the room remains fixed to its
center, as there are no other controls for moving around the room.
The virtual dimensions of the space are such that when the user
is directly looking at the centre of a wall, they have in their field
of view (FoV), that entire wall plus approximately half of the two
laterally adjacent walls. The user has the whole height of the wall
in their FoV. A white dot at the centre of the user’s FoV shows the
user the center point of the camera view. Further, the red panel on
the top left of the screen shows some basic statistics (time elapsed,
notifications issued etc.) and remains fixed in this position of the
user’s FoV as they move their view around.

3.1.1 Presenting event notifications with semantic cues. When a
particular sensor sends data which is evaluated as appropriate for
raising an event, this information gets passed through the Kafka

2021-10-19 14:32. Page 3 of 1–8.
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Figure 2: Schematic of the VR control room layout.

Figure 3: View inside the VR control room. The mobile
screen is split in two, to display the stereoscopic image.

pipeline to the dashboard application. In the context of the VR
control room, we choose a unimodal (visual) presentation of the
event to the user, which is achieved through a colour-coded stacked
list on the bottom right of the user’s FoV (Figure 4), providing thus
semantic cues to the user as per [9]. The notification stack remains
fixed in position in the user’s FoV, following the videogame-like
HUD guideline as per [17, 29]. Items are added on top of the stack
as they arrive, in chronological order. Each item in the stack is
color-coded for event severity (green, orange, red). Two lines of
text show the name of the instrument related to the event, and the
name of the wall on which this instrument can be found.

3.1.2 Notification dismissal. The user can dismiss a notification
(remove it from the stack) by placing the FoV-centre white dot
anywhere on the instrument related to the notification, and keeping
it there for 5 seconds. When the user places the white dot on an
instrument related to an event pending in the stack, the dot changes
to a display a countdown in seconds for the time needed to fixate on
the instrument. This process emulates the user’s engagement with
a particular job, perhaps not in a very realistic way, but definitely
enough to simulate the shift of attention (focus) on a specific aspect
of the UI, much like what might happen in real life during an event.

3.1.3 Spatial cues. As a further means to assist the user in locating
an event-raising instrument was implemented, by providing a spa-
tial cue, as per [9]. This was achieved with a 3D arrow, which can
be optionally presented on the top centre of the user’s FoV. This

arrow rotates to point towards the direction of the current most
critical notification, regardless of when it was issued. If there are
multiple notifications with the same criticality (e.g. two reds), the
arrow points to the one issued first.

3.1.4 Demonstration and code availability. A video demo of our
system can be viewed at https://youtu.be/QVlVL1p4pjI. The devel-
oped VR client runs on Android devices (version 10 and above) and
can be downloaded as an APK from http://www.komninos.info/
marineVR/vrmonitoring.zip. The client does not require a Things-
Board instance to run, as it generates random events from within
the application for demonstration purposes. The complete source
code for the VR client is available on request.

Figure 4: Display of notifications stack in the VR control
room

4 EVALUATION
4.1 Experimental conditions
4.1.1 Experiment design. We designed an experiment with an aim
to investigate the role of spatial cues (namely, the presence of the
3D arrow) in handling notifications in the VR control room environ-
ment. Therefore our experiment involves two conditions, "Single
Cue" (SC) involving presentation with semantic cues only, and
"Multiple Cues" (MC), involving presentation with both semantic
and spatial cues. The experiment followed a repeated measures
approach, with participants experiencing both conditions in a coun-
terbalanced manner, in order to mitigate learning effects. Each
participant was asked to perform five sessions under each condi-
tion, with each session having a duration of 3 minutes, resulting
in a total of 10 sessions per participant. For the purposes of the
experiment, we "fed" the system with data from generator scripts
(not real sensors), which were tuned to probabilistically generate
approximately 10 anomalous data events every 3 minutes (i.e. the
duration of each session). Therefore each participant would attend
to approximately 100 notifications across both conditions.

4.1.2 Procedure. At the start of the experiment, participants filled
in appropriate consent and basic demographic forms. Participants
were then seated safely in a rotating office chair, in an obstacle-
free environment. Before the actual experiment, participants were
exposed to the VR environment for an unrestricted amount of time
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(until they felt they had familiarised themselves with it). During the
familiarisation process, we adjusted the headset straps and lenses
to ensure participant comfort and viewing clarity, explained the
basic principles of operation and answered any questions about
the system. For the experiment, we instructed the participants
that they should focus on the video stream and watch it, while
no notifications were active in the experiment. We also instructed
them to immediately tend to notifications by locating the necessary
instruments, and to try to dismiss higher priority notifications
before tending to others. To prevent VR-sickness issues, we allowed
participants to rest for at least two minutes between sessions and
for at least five minutes between conditions, or for as long as they
needed before feeling ready to proceed.

4.1.3 Materials. The equipment used for the study was a Xiaomi
Redmi 8 Note Pro smartphone, with an Archos VR headset used to
attach the smartphone and deliver the experience. Since the device
splits the view in order to create the stereoscopic effect, the effective
resolution of the display was 1170 x 540 pixels (half the original
screen resolution of 2340 x 1080) which was adequate to provide
good legibility of text in the application.

4.1.4 Participants. We recruited 17 participants through conve-
nience sampling at our university department, aged between 25-38
years old (3 female). None of the users were familiar with marine
vessel systems. Most participants (14) had never experienced VR in
the past.

4.2 Data collected
For each notification, we collected the experiment condition, session
number, notification generation timestamp in milliseconds, the
notification priority, the instrument related to the notification, the
horizontal plane angle between the user’s FoV centerpoint and
the instrument relating to the notification (as a means to capture
how much the user’s head had to turn to find the instrument, see
Figure 5) and finally the number of ongoing (active) notifications at
the time of issue. We also recorded the timestamp at the moment
of notification dismissal, and the number of active notifications
at the time of dismissal. We noticed in a few instances that some
captured data was corrupted and we removed these cases from the
dataset. Since notifications are generated in a randommanner, some
participants might experience more notifications in a given session
than others. The number of notifications in sessions ranged from
3 (1% of all sessions) to 10 (42%), with 96% of all sessions having
5-10 notifications (8-10: 75%), thus we consider the exposure of
participants to the conditions satisfactory. In total, we collected
data for 646 notifications in the SC condition, and 558 notifications
in the MC condition.

4.3 Empirical findings
In the following analyses, statistical tests are chosen after checking
whether the required assumptions hold (e.g. normality, skewness
etc.).

4.3.1 Effect of spatial cue on response time. We first take a high-
level view on the data, by examining whether the presence of a
situational cue has an effect on notification response time. The
mean response time across all user sessions is longer in the SC

Figure 5: Horizontal plane angle θ between user’s FOV cen-
trepoint and an event-raising instrument.

condition (x̄ = 24.801s, s = 9.998s) than in the MC condition
(x̄ = 19.991s, s = 10.585s) as shown in Figure 6, representing
a medium effect size (d = 0.467). A Wilcoxon signed-rank test
however revealed that this difference is not statistically significant
(Z = −1.160,p = 0.246). Further breakdown of the response time
according to session ID reveals a learning curve (Figure 7) with
participants performance improving continuously until session 4.
The last session has increased response times, which could be at-
tributed to participant fatigue during the experiment. To obtain a
clearer result of participant performance, we repeat the statistical
testing procedure, using only data from sessions 3-5 into account.
In this case, we note that, again, on average the response time is
slower in the SC condition (x̄ = 19.790s, s = 6.466s) than in MC
(x̄ = 15.571s, s = 5.783s), again representing a medium effect size
(d = 0.69). The difference this time though is statistically significant
(Wilcoxon signed-rank test, Z = −2.059,p = 0.039). For the rest of
the analysis, we proceed with data from sessions 3-5 only.

4.4 Effect of angle between user’s FoV and
instrument

Hypothesis 2 is founded on the assumption that the response time
to a notification might increase with the viewing angle, since the
user’s body will need to rotate more to find the relevant instrument
when this angle is larger. We recorded angles as signed floating-
point values to indicate the direction (left or right), but for this
analysis we employ the absolute value, since the rotation direction
is irrelevant. For this, we perform a Spearman’s correlation test
between the observed response time and angle in each condition.
In both cases, a correlation cannot be established with statistical
significance (SC ρ = −0.400,p = 0.112, MC ρ = −0.142,p = 0.586).
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Figure 6:Meandifference of response time across conditions,
using data from all sessions (first two bars) and data from
sessions 3 to 5 only (last two bars).

Figure 7: Mean response time across sessions.

4.5 Effect of semantic cues on response time
Next, we examined user response time based on notification prior-
ity, since our instructions to participants were to attend to higher-
priority notifications first. As can be seen in Figure 8, users exhibit
lower response times for more urgent notifications in both the SC
condition (Low priority x̄ = 21.851s, s = 7.682s; Medium priority
x̄ = 18.911s, s = 8.607s , High priority x̄ = 16.821s, s = 6.814s)
and also in the MC condition (Low priority x̄ = 21.851s, s =
7.682s; Medium priority x̄ = 15.352, s = 5.148s , High priority
x̄ = 12.342s, s = 4.575s). Although in both conditions we notice
the same trend, the differences in response time across priority
levels within the SC condition is (marginally) not statistically sig-
nificant (Friedman test, χ2

(2) = 4.507,p = 0.105), while the same
test shows a statistical significance exists within the MC condition
(χ2

(2) = 15.176,p < 0.001). Pairwise Wilcoxon signed-rank tests
with post-hoc Bonferroni correction (setting the p-value thresh-
old to 0.017 shows that a statistically significant difference exists
between the mean response times of Low vs. High and Medium
vs. High priorities within the MC condition (Medium-Low Z =
−1.704,p = 0.088, High-Low Z = −3.337,p < 0.001, High-Medium
Z = −3.195,p < 0.001). On the other hand, comparing the mean
response time for the same priority level across each condition, we

note that while response time is generally lower in the MC con-
dition, these differences are not statistically significant (Wilcoxon
signed-rank tests, Low priority Z = −1.681,p = 0.093, Medium pri-
ority Z = −1.775,p = 0.076, High priority Z = −1.917,p = 0.055).

Figure 8: Mean response times in each condition, for each
notification priority category.

As a final step, we examined whether there might exist interac-
tion effects between the notification priority level and the exper-
iment condition in terms of the response time, after controlling
for the number of active notifications at the time of issue. The
reason for this is that we can arguably assume that when many
notifications are active in the users’s environment, those with a
lower priority would take longer than normal to be dismissed, as
the user tends to other notifications first. In fact, a Spearman’s cor-
relation test shows that this assumption might be plausible, since
there is good correlation between response time and number of
active notifications at the time of issue (ρ = 0.504,p < 0.001). For
this purpose, we employ a two-way ANCOVA analysis. We did
not find a statistically significant interaction between notification
priority and experiment condition, whilst controlling for active
notifications, (F2,1197 = 2.884,p = 0.056, partial η2 = 0.005), which
can also be visually verified in Figure 9.

Figure 9: Results of interaction effects analysis between ex-
periment conditions and notification priority.
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Since we did not achieve statistical significance, we can examine
the main effects of notification priority and experiment condition
on response time, after controlling for the number of active notifi-
cations, using Bonferroni-adjusted post-hoc pairwise tests. From
these results, it appears that experiment condition does not display
a statistically significant effect (∆x̄ = 1.033,p = 0.406). On the
other hand, we observe statistically significant main effects of noti-
fication priority between Low and Medium (∆x̄ = 4.400,p = 0.006),
Low and High (∆x̄ = 8.238,p < 0.001), and, Medium and Low
(∆x̄ = 3.837,p = 0.039).

4.6 Discussion
4.6.1 Overview of findings. In the preceding analysis, we found
evidence to support H1 (effect of spatial cue on response time). The
addition of the 3D arrow was successful in guiding operators to the
relevant instrument, reducing the response time to notifications.
In a crowded information space, the need for visual search to lo-
cate instruments was reduced by the spatial cue, and this effect
persisted even after several sessions had been completed, therefore
adding further to the beneficial effects of familiarisation with the
environment.

Next, we failed to find evidence that supports the hypothesis
that response time is related to the angle between users’ attention
and the related instrument (H2), which means that navigation in
the environment (body and head rotations) were quick enough and
did not affect response time.

Finally, we found partial evidence to support our final hypothesis
(H3) that the semantic cues relating to notification priority might
reduce response time to important notifications. Although a trend
towards reducing response time in higher-priority notifications
was observed in both conditions, only the combination of semantic
and spatial cues allowed participants to improve their response
time in a statistically significant manner.

4.6.2 Implications. Overall these empirical findings demonstrate
the viability and potential of replacing complex large-display type
dashboards with immersive VR environments. Though we pre-
sented a marine vessel environment as the use-case for our work,
the concept of complex, immersive VR control environments can be
applied to a wide range of Industry 4.0 use-cases, for example, the
monitoring of fixed industrial installations, such as electricity pro-
duction and distribution installations, or dynamically configurable
networks of manufacturing facilities (virtual factories). In fixed
installations, the prototype could allow engineers to dynamically
create customised views to monitor various system components,
which could become as simple or as complex asmight be required by
the task at hand (e.g. simple monitoring of subsystems to respond-
ing to an emergency that affects or involves multiple interlinked
subsystems). In the case of virtual, geographically distributed indus-
trial systems (virtual factories), ad-hoc networked configurations of
machines, installations and materials are created to serve the need
to produce a particular product for a given customer under the con-
straints of prevalent conditions at the time of order. The complexity
of the manufacturing configuration required to fulfil the order can
vary significantly, therefore a dynamically adaptive monitoring
environment can prove indispensable for such systems. In either
case, however, the added flexibility afforded by the dynamically

configurable immersive control room, means that engineers will
continuously face the task of interaction with an unfamiliar setting.
To overcome the problems associated with lack of familiarity with
the environment, spatial cues can definitely play an important part,
by assisting monitoring engineers to find the information they need
quickly and accurately.

4.6.3 Limitations and future directions. Further research still needs
to be carried out in order to investigate this promising concept
more deeply, since our work has some obvious limitations. Firstly,
the participants in our study were recruited through convenience
sampling at our university, and therefore are not representative of
the intended user-base for such a system. Since we focus primarily
on issues relating to the fundamental effects of these spatial cues on
users’ cognition, the experimental findings are still useful, though
for further development of the system, user requirements pertinent
to the design and presentation of spatial cues and experimental
evaluation should be carried out with a more representative sample.
The task presented to the users is partially artificial, since the user
does not really interact with the environment in order to solve
particular issues. Implementing further controls and processes to
solve problems (e.g. clicking on a sequence of switches to release
superfluous pressure or to shutdown a system) will add to the
cognitive load of operators, and it would be interesting to examine
how processes can be supported in a VR environment whilst still
maintaining situational and contextual awareness. We would also
like to investigate the use of multimodal alerts, for example by
providing spatial cues in 3D audio, which could guide an operator
to a problematic component more subtly, especially for non-critical
alerts.
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