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Text Input on  
a Smart Watch

T ext entry is a key component 
of many smartphone applica-
tions. The recent release of smart 
watches has met considerable 
interest, but without text entry, 

interaction is frustratingly limited—users can 
see posts, short messages, and emails but can’t 
reply using the watch. As part of our ongoing 
work, we outline a text entry approach for 
smart watches, describe our initial prototype, 
and discuss the outcomes of our lab-based eval-
uation of the prototype.

Text Entry on Small Devices
Before the widespread adoption of touchscreen 

smartphones, 12-key physical-
keypad phones were the most 
common text entry method on 
small devices. Predictive tech-
nologies interpreted the am-
biguous keys (usually three or 
four letters per key) and sug-

gested words.1,2 This approach was shown to 
achieve speeds of approximately 10 words per 
minute (wpm) for novices and 20 to 25 wpm for 
experts in controlled studies.3

In a previous study, we investigated this ap-
proach using a reduced number of keys for text 
entry on watches, but we implemented it on a 
touchscreen handheld device.4 In theory, 12-
key ambiguous predictive text quality could 
be very high (over 90 percent accurate), but in 
reality, each key sequence could match many 
different words, and some of these sequences 

included pairs of common words that caused 
problems. (For example, on a standard phone 
keypad, “he” and “if” are typed with the same 
keys.) The early models of prediction were based 
on simple unigram dictionary models that sug-
gested the most common word matching a se-
quence. Nowadays, phones have much more 
power and memory, so they can easily support 
more complex prediction models, greatly reduc-
ing the impact of ambiguity.

Alternative approaches for input on small 
devices include handwriting,5 fast but difficult-
to-learn chord keyboards,6 and specialized al-
phabets.7 Many domestic appliances, such as 
televisions and games, use a date-stamp-in-
spired method, where the user scrolls through 
the alphabet and picks letters from a 2D line 
or 3D grid. However, this has been shown to 
be a slow entry method.8 Finally, gesture word-
based input techniques offer great benefits for 
mobile phones and can provide a fast and more 
relaxing input method than continuously tap-
ping small on-screen buttons.9

There is currently very little work focusing on 
text entry for smart watches. One such method 
is Zoomboard, where a full qwerty keyboard 
is shrunk to fill the smart-watch screen.10 Us-
ers tap once to zoom into a keyboard area and 
a second time to select a letter from that area. 
Although shown to be good enough for input 
speeds up to 9 wpm, this interaction method 
lacks suggestion support and increases the 
number of interactions, because additional in-
put is required for zooming. Furthermore, this 
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method places a cognitive load on us-
ers who have to remember the approxi-
mate area where the desired key might 
be located. Minuum (http://minuum.
com) recently demonstrated smart-
watch entry using a keyboard that 
compresses a qwerty keyboard layout 
to one line and incorporates word sug-
gestions. This layout’s efficacy has not 
been evaluated in a publication and the 
layout has not been formally evaluated 
as being optimal for this size of device, 
although the keyboard is a direct de-
rivative of the work of Frank Chun Yat 
Li Li and his colleagues,11 who showed 
this keyboard layout to work efficiently 
on tablet-size devices.

Smart-Watch Prototype
Based on the literature and our previ-
ous experience,12 we hypothesized that 
efficient text entry is possible with a 
wearable device such as a smart watch.

Initial Design
We decided to focus on taps for the 
primary input method, because this is 
the quickest simple interaction to per-
form compared to handwriting and 
tracing.12,13 Because the accuracy of 
taps declines rapidly when buttons are 
small,14 we decided to design for large 
keys, rather than try to squeeze overly 
small keys onto the device and rely 
heavily on correction.

We segmented the display into seven 
zones (see Figure 1a). Zones 1 through 
6 form large ambiguous keys while the 
center zone shows the current input 
text and also acts as a space bar. For 
word entry the user will type on keys 1 
through 6 with the input being disam-
biguated by the text entry system (run-
ning on the connected smartphone). 
Figure 1b and 1c show an allocation of 
the alphabet to the six keys: letters A, B, 
C, and D share button 1; E, F, G, H, I, 
and J share button 2; and so on.

For our initial design, we defined in-
teraction as follows:

1.	 A tap on an ambiguous key entered 
that key number and updated the 

current word display to reflect the 
most likely word from the disam-
biguation engine based on the cur-
rent key sequence.

2.	 A first tap on the central zone added 
a space with subsequent taps rotat-
ing through alternative suggestions 
that match the ambiguous entry.

3.	 Swipe gestures included backspace 
(←), word completion (→), toggle 
capitalization (↑), and numeric 
punctuation mode (↓).

4.	 A long press on the center zone en-
tered edit mode to allow movement 
of the caret, while a long press on 
the alphabetic keys showed ex-
tended characters for that key (for 
example, à, á, å, ç, and so on for 
the ABCD key).

The arrows in element 3 denote the fin-
ger-swipe direction that constitutes the 
gesture. In our prototype implementa-
tion, we didn’t use all of these gestures, 
as will be explained later, but the design 
here shows that oft-used functions of 
an input method should be quickly ac-
cessible to users. A gestural implemen-
tation permits this, without taking up 
additional screen space for dedicated 
buttons.

Keyboard Layout
Although there has been consider-
able work on optimized keyboard lay-
outs,15,16 here we decided to maintain 
a standard alphabetical layout to aid 

initial pick-up usability. There are, 
however, many ways to split the alpha-
bet across multiple keys, with two com-
peting optimization criteria: ambiguity 
of the layout and movement distance. 
To reduce ambiguity errors, the best as-
signment of letters to keys would sepa-
rate letters that can commonly cause 
confusion when in the same location in 
a word—for instance, putting “a” and 
“e” on the same key would be prob-
lematic, because many common words, 
such as bed and bad, are only differen-
tiated by this pair. Arranging the splits 
can help minimize the distance users 
have to move their finger when entering 
text by putting commonly co-occurring 
letters on the same key. In the extreme 
case, putting all 26 letters on one key 
would minimize the amount of move-
ment of the fingers while typing, but at 
a massive cost to ambiguity.

We analyzed all possible alphabetic 
arrangements over six keys using an 
ambiguity score based on badgrams15 
(bigram frequencies for English of 
how likely a single letter substitution 
is to result in a different word, such as 
“bad” instead of “bed”) and weighted 
distance based on English bigram fre-
quency data (the most common bigram 
in English is “TH,” so the distance 
from T to H is weighted higher than, 
say, from Q to I). The least ambiguous 
keyboard was “abcd efgh ijklm nop qrs 
tuvwxyz,” whereas the keyboard with 
the least travel required for the finger 

Figure 1. Our prototype implementation on a Sony SmartWatch 2: (a) concept,  
(b) design, and (c) implementation.

(a) (b) (c)
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was “abcdefghijklmnopqrstu v w x y 
z.” Figure 2 shows the distribution of 
the layouts (with both axes scaled to 
the range 0…1, where 0 is the worst we 
found and 1 the best).

To select a layout, we took a weighted 
average with disambiguation getting 
more weight than distance—because 
distances are small, we felt it more im-
portant to minimize ambiguity than 
movement. The best compromise key-
board was selected as “abcd efghi 
jklmn opqrs tuv wxyz,” which is highly 
ranked for disambiguation quality and 
received the highest distance score on 
the plateau in Figure 2 (this keyboard 
is shown as a red dot at the top center 
of the figure). For reference, the tradi-
tional phone keyboard is shown as an 
orange dot at the top left. This shows 
that our six-letter-key layout performs 
very close to the 8-letter-key phone 
layout in terms of raw ambiguity of 
layout. However, as discussed earlier, 
prediction technology has improved 

considerably since predictive text be-
gan appearing on physical phone key-
boards, so we expect higher prediction 
accuracy in practice.

Initial Implementation
Our implementation was built using 
OpenAdaptxt17 running on an Android 
smartphone paired to a Sony Smart-
Watch 2. The watch has a 30 × 25 mm 
screen linked by Bluetooth to the smart-
phone, where the bulk of processing is 
done. The OpenAdaptxt framework 
provided us with a powerful disambig-
uation engine that gives contextually 
based word suggestions, word comple-
tion, and next-word suggestions.

For our prototype, we implemented 
elements 1 and 2 of our interaction de-
sign listed earlier, along with the back-
space (←) and completion (→) gestures. 
We also implemented a “symbol” mode, 
activated by pressing the watch’s menu 
button instead of using the downward 
swipe gesture. Our test phrase set used 

the basic Latin alphabet, so we didn’t 
require accented characters for this trial 
(and thus omitted those from our cur-
rent implementation). Figure 3 shows a 
storyboard of entering a short phrase.

User StudiesTo investigate the usabil-
ity and performance of our keyboard, 
we conducted controlled user studies 
with 20 users (nine female), recruited 
through mailing lists. The participants 
were primarily undergraduate and 
postgraduate students in our univer-
sity’s Computer and Information Sci-
ences Department and were all regu-
lar touchscreen smartphone users, but 
none had prior experience with a smart 
watch. Participants were given a £10 to-
ken for taking part.

Study Design
The study consisted of single-partici-
pant sessions, which were composed of 
four phases:

1.	 introduce and complete a brief 
prior-experience form;

2.	 briefly demonstrate how to enter 
text using our system;

3.	 complete formal tasks; and
4.	 complete final questionnaire and 

briefly discuss results.

Following the standard text entry 
approach for evaluation, we asked us-
ers to enter a set of short phrases using 
the smart watch. (Our phrase sets are 
available at http://personal.cis.strath.
ac.uk/mark.dunlop/research/watchtex-
tentry/phrasesets.html.) We based our 
formal tasks (phase 3) on the Enron 
email set.18 We used the “memorable” 
phrases from this collection—a set of 
relatively short phrases that have been 
shown to be easy to remember in copy 
tasks. We randomly selected 44 phrases 
and, to reduce the risk of particular 
words or phrases excessively affecting 
results, split them into two sets of 22 
phrases. Each set contained two prac-
tice phrases followed by four groups of 
five phrases. Participants were equally 
and randomly distributed to the two 
phrase sets. Because the studies were 

Figure 2. Distribution of keyboard scores. The score of the best compromise 
keyboard, “abcd efghi jklmn opqrs tuv wxyz,” is noted with a red dot at the top 
center, and the score of the traditional phone keyboard is shown as an orange dot at 
the top left.

1

.9

.8

.7

.6

.5

Di
sa

m
bi

gu
la

tio
n 

sc
or

e

Distance score

.4

.3

.2

.1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

PC-13-04-kom.indd   4 17/09/14   9:20 PM



october–december 2014	 PERVASIVE computing� 5

conducted in the UK and we were using 
a UK-English dictionary, we adjusted 
the phrase set slightly with minor spell-
ing variants and changed some names 
to common British names. Because our 
initial implementation didn’t fully sup-
port contractions (such as “won’t”), 
we also replaced these with full words 
(“will not”).

To investigate how the length of 
phrases affects user performance, we 
sorted the phrases into four groups 
based on the length of phrases—we 
focused on phrases of under 160 char-
acters (the traditional SMS limit and 
higher than the 140 limit on Twitter). 
The two practice phrases (group 1) 
and first group of main phrases (group 
2) were the shortest (average length 
of 13.0 and 13.1 characters, respec-
tively—for example “Are you there?”). 
In each subsequent group, we increased 
the average phrase length to a maxi-
mum average of 52.3 characters for 
group 5 (for example, “I will follow up 
with him as soon as the dust settles”). 

As a result, the five groups had average 
phrase lengths of 13.0, 13.1, 21.0, 36.2, 
and 52.3 characters, respectively.

Participants were asked to wear the 
watch on their nondominant hand 
throughout the study and all partici-
pants chose to enter text using their 
dominant hand’s index finger (Fig-
ure 4). We asked participants to com-
plete a NASA Task Load Index (TLX) 
form19 after completing each group 
and an exit questionnaire at the end of 
the session. This form lets participants 
self-report on the task’s mental, physi-
cal, and temporal demand, as well as 
on the perceived effort, performance, 
and level of frustration level. Comple-
tion of the TLX form was followed 
by a brief discussion about their com-
ments and views.

Input Performance
Our prototype also included an auto-
matic logging module. For each input 
phrase, we captured the time it took 
participants to type the phrase, the 

frequency of backspace gestures, the 
number of word completions, and their 
computed wpm during the input task 
(based on the standard five characters 
per word, including a space). Figure 5 
summarizes our results.

Upon examining the data with a 
Shapiro-Wilk test, we found it to be not 
normally distributed in most cases, so 
in the following report of correlations, 
we use Spearman’s rank correlation 
coefficient and mean differences using 
nonparametric tests.

Participants generally took longer to 
complete phrases as they increased in 
length. This is confirmed by a statisti-
cally significant correlation (rs = 0.823, 
p < 0.01). We also note that the num-
ber of backspaces, indicative of typing 
errors, also shows an increase in line 
with the increase in task length (rs = 
0.665, p < 0.01). Although the num-
ber of word completions correlates with 
the size of task length (rs = 0.588, p < 
0.01), the typing rate achieved by par-
ticipants was constant during all tasks 

Figure 3. Interaction sequence storyboard to enter “Have a good time.” Blue circles represent taps, while on-screen arrows 
represent swipe gestures and their direction.
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within each phrase group (Mwpm = 
8.081, standard deviation = 2.789), as 
confirmed by a Friedman (k-indepen-
dent samples nonparametric) test (χ2 = 
4.120, p = 0.39).

Workload Self-Assessment
We were also interested in users’ sub-
jective impressions of workload. Fig-
ure 6 shows users’ self-assessments 
obtained via the NASA TLX form af-
ter each group of phrases. Participants 
typically ticked one of the gaps in the 
form, giving a range from 1–20 with 
the center line being between points 
10 and 11. A lower score was good 
throughout, with 1 being best perfor-
mance (least load) and 20 being worst 
performance (highest load). While re-
sults were not very low overall, they 
were on average below the central bar 

for all dimensions and groups, show-
ing that the watch wasn’t particularly 
demanding to use.

However, several dimensions showed 
an increase as participants went 
through the phrase groups, and none 
showed an overall drop—as is normal 
while users are learning a system. This 
indicates that the increase in length 
of phrases posed additional load that 
was not compensated for by increased 
experience.

Users initially rated their mental load 
quite high; this fell and then increased 
toward the end of the session. We found 
statistically significant differences in 
the means between phrase groups 2 and 
5 (d = 2.970, p < 0.01), 3 and 5 (d = 
2.558, p < 0.05), and finally groups 4 
and 5 (d = 2.327, p < 0.05), using Wil-
coxon signed rank tests.

Users reported that the physical 
workload was low for the first three 
phrase groups but higher toward the 
end of the sessions. We found statis-
tically significant differences in the 
means between groups 1 and 5 (d = 
1.967, p < 0.05), 2 and 5 (d = 2.204, 
p < 0.05), and 3 and 5 (d = 2.078, p < 
0.05) using Wilcoxon signed rank tests, 
confirming users were finding the phys-
ical workload higher in the final group 
compared to the first three. This re-
flected some comments from users that 
they were tiring and over time found 
the typing position uncomfortable.

Temporal workload measured how 
much time pressure the participants 
felt. Following a similar pattern to 
mental workload, users felt the least 
temporal pressure in the middle phrase 
group, and this rose toward the end. 
A significant difference was shown in 
the means between groups 3 and 4 (d 
= 2.086, p < 0.05) and groups 3 and 5 
(d = 2.207, p < 0.05), using Wilcoxon 
signed rank tests.

Users’ rating of their performance in 
the task didn’t vary significantly across 
the phrase groups (ANOVA with post 
hoc Bonferroni tests). This is in line 
with our observation that users tended 
to focus more on accuracy throughout 
rather than speed of entry, so they felt 
no variation in their success in complet-
ing the tasks.

The overall effort rating followed the 
pattern of mental and temporal effort, 
but it showed a statistically significant 
increase in effort in pairwise compari-
sons only between groups 2 and 5 (d = 
2.75, p < 0.05, ANOVA with post hoc 
Bonferroni).

Finally, overall user frustration ap-
peared to grow throughout the session 
on average but with wide variations in 
reported scores. This was confirmed 
by statistical tests using the Wilcoxon 
signed rank test, which revealed a sta-
tistically significant difference in the 
means only between phrase groups 2 
and 4 (d = 2.068, p < 0.05). Again, 
this is concerning, because you’d ex-
pect frustration to drop with time. This 

Figure 4. A participant using our prototype. All participants chose to enter text using 
their dominant hand’s index finger.
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confirms our view that the increases in 
phrase and word lengths had a larger 
impact than learning effects could 
counter.

Qualitative Feedback
At the end of the session we asked the 
users several questions about their 
experience with the watch text entry 
method. Using 7-point Likert scales, 
we asked for their overall rating of 
the keyboard and how likely they 
would be to use a watch rather than 

their phone for various tasks. Sum-
marized in Figure 7, this shows that, 
overall, the watch wasn’t particularly 
easy or hard to use, and participants 
showed a stronger preference for us-
ing the watch for social replies than 
for typing their own posts. Further-
more, they didn’t want to use the 
watch for longer text such as emails. 
However, the caveat here is that users 
were exposed to our solution only for 
a short time and didn’t try it in real-
life situations.

We also asked users to list the three 
best and three worst aspects of watch-
based text entry. The main strong 
points were that the prediction qual-
ity was high, the watch interface was 
generally easy to understand and use, 
the watch interface made good use of 
the space available, tactile feedback 
was helpful, and the use of swiping for 
backspace and completion was helpful 
and easy to use.

On the negative side, users reported 
frustration with the watch sometimes 
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being slow to respond and failing to 
recognize taps. We observed that us-
ers didn’t clearly understand that the 
central space bar could also be used to 
“insert space” and “rotate through sug-
gested words.” This was also reflected 
in users’ comments about their con-
fusion regarding how to enter a space 
(without being given a suggestion) and 
in having to cycle through the whole 
suggested word list if they missed the 

word they wanted. The predictive sys-
tem also raised problems with edit-
ing: if users misspelled or mistapped 
a word, they often had to backspace 
the whole word to correct it. As one 
user explained, “Getting lost spelling 
a word in the middle of the word… [it] 
is sometimes difficult to easily under-
stand which keys have been pressed 
in the context of your word if another 
[word] is predicted because each key 

is mapped to many characters… acci-
dently typing the wrong letter makes 
me have to delete the whole word.”

Other issues raised were the inabil-
ity to directly control capitalization or 
move the cursor. We also had network 
problems with some users that led to the 
host application stopping when it failed 
to save logged data over the network—
users commented on these crashes but 
they weren’t frequent enough to impact 
users’ overall feedback. Users rapidly 
learned the alphabetic layout and were 
able to quickly tap the right keys. As 
noted earlier, we observed user confu-
sion with tapping the central area for 
space and for the next suggestion; this 
was confounded by the right swipe au-
tomatically inserting a space.

We also observed that particular 
words caused frequent problems. For 
example, “definitely” wasn’t suggested 
early and the spelling caused difficulty, 
with any mistake leading to drasti-
cally different suggestions. As reported 
earlier, when users spelled a word in-
correctly, they tended to correct with 
multiple backspaces to the start of the 
word to start again—reflected in the 
rise in backspace use through the study 
groups.

Discussion
Our alphabetic ambiguous-key ap-
proach to text entry, based on mul-
tiple letters distributed over six keys, 
worked well with users quickly adapt-
ing to the entry process. The only di-
rect impact of the ambiguous-key ap-
proach was that users who misspelled 
a word found it difficult to quickly 
recover and often backspaced out the 
whole word. One of the strengths of 
OpenAdaptxt is its ability to learn the 
user’s individual writing patterns and 
adjust predictions to their particu-
lar patterns. We disabled this feature 
for this study because it would over-
learn the test phrase sets. In reality, 
a user’s regularly used phrases would 
dominate, reducing the problems with 
ambiguous entry. Furthermore, inte-
grating a spellchecker would directly 
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address the problem of misspelling 
words.

Our users liked both prediction and 
word completion. However, they found 
our interface design problematic, be-
coming confused between space and 
word-complete functions and frus-
trated when cycling through the sugges-
tion list for rarer words. We now pro-
pose removing the overloaded space key 
as originally proposed in earlier work4 
and instead using the commands pre-
sented in Table 1.

A few users reported sensitivity prob-
lems with the watch. The main prob-
lem here appears to be with taps that 
move slightly during the press—these 
can erroneously be recorded as swipes, 
particularly when the user is trying to 
type carefully (thus pressing hard and 
slowly). After our initial prototyping, 
we introduced a time-based threshold 
for taps and swipes (unfortunately, the 
Sony SmartWatch API didn’t permit 
distance-based thresholding). In the 
absence of improved event information 
from the API, a dynamic thresholding 
approach could be used to tune the time 
thresholds to the individual user.

O verall, our users achieved 
an average of 8.1 wpm, 
with many phrases being 
entered at over 10 wpm (in 

line with novice use of traditional phone 
predictive text entry).3 This isn’t fast in 
terms of entry from smartphones, but 

given the improvements we suggest and 
the use case of short replies, we see this 
as positive confirmation that smart-
watch text entry speeds can be good 
enough for short messages. In fact, par-
ticipants saw value in using the watch 
to respond to social-network postings 
without having to retrieve their mobile 
device. One participant raised the inter-
esting idea that using the watch would 
allow him to move to a larger “phablet” 
that could be kept in his bag except for 
more intense use.

In the longer term, watch APIs will 
improve to allow more advanced entry 
methods, such as gesture-based entry, 
and more dynamic interaction with 
suggestions and the interface. How-
ever, we see strong evidence support-
ing our ambiguous-key approach, used 
with simple gestures, and, based on our 
user study, we’ve proposed a refined 
model that applies visual and basic 
haptic feedback. This method should 
be suitable for other small touch sur-
faces, such as fabric-, project-, or skin-
conducted surfaces. 
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