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Abstract—The retrieval of the appropriate contact in order to 
start a new communication session from the contact repository of 
mobile devices can be a time consuming procedure since mobile 
contact lists usually contain hundreds of items. Several 
researchers have focused in the past on predicting the next 
contact a user is likely to call, a task that could prove useful in 
designing adaptive context-aware interfaces for the mobile 
contact list. Most of the researchers propose several contextual 
dimensions that could be used to predict the next callee, location 
being one of them. However, none of these research works have 
ever examined the impact of location on mobile communications 
and only few have actually incorporated this contextual 
dimension on their implementations. In this paper, we examine 
physical location as a contextual cue for adaptive mobile contact 
lists by analyzing call logs from the Nokia Mobile Data Challenge 
dataset. Our work indicates that, contrary to previous literature, 
the consideration of physical location as a context dimension does 
not necessarily lead to improvements in the accuracy of 
predicting the likelihood of communication with contacts for all 
types of users included in the dataset under review. Finally, we 
also discuss the possible reasons behind this limited impact. 

Keywords—physical location; context awareness; call 
prediction; adaptive contact list 

I. INTRODUCTION 
As mobile phones are primarily communication devices 

[1], a common task that their users often accomplish in order to 
start a new communication session is that of contact retrieval. 
There exist several mobile interfaces from which a contact can 
be retrieved: contact list, recent call list, speed dial widgets, 
notifications etc. From all these alternatives, the contact list 
appears to be the most popular choice of users when placing a 
new call [2]. However, the mobile contact list repository may 
contain hundreds [3] or even thousands (especially when 
importing contacts from social networking and 3rd party 
communication services) [4] of items and at the same time 
users are reluctant to delete unused contacts [4][5]. As a result 
and taking also into account the screen size limitations of 
handheld devices, the cognitive load required for the task of 
contact retrieval increases when performed on a mobile phone. 

Adaptive interfaces that take advantage of mobile context 
could offer considerable help to the users while searching for a 
contact. For the case of making an external call, such interfaces 

could include adaptive contact and speed call lists. Such 
solutions require a context aware algorithm that predicts at any 
time the next contact to be called. In previous work [6][7], we 
proposed such an algorithm that uses the context dimensions of 
frequency and recency of communication and whose top 
suggestions feed a speed dial list, facilitating contact retrieval 
[8]. 

Several context dimensions have been proposed for 
adaptive algorithms, location being one of them. It is 
unanimously accepted in literature that location appears to be 
one of the most important aspects of context in mobile 
communication [9], while mobile users rank location as the 
second more important aspect of context [10]. However, for the 
case of adaptive contact interfaces this consensus seems to be 
based on little more than an assumption, since none of the 
research efforts have ever examined the actual impact of the 
caller location on selecting the contact to start a new call with. 

In this paper, we attempt a thorough examination of 
physical location as a context dimension for predicting the next 
callee. We analyze call logs from the Nokia Mobile Data 
Challenge dataset [11][12] and we present interesting patterns 
regarding the effect of physical location, on a city level, on 
mobile communication. We show that using a location 
dependent frequency dimension for predictions instead of 
normal frequency, does not necessarily lead to improvements 
in the accuracy of predicting the likelihood of communication 
with contacts for all types of users included in the dataset under 
review and we also discuss the possible reasons behind this 
limited impact. 

II. RELATED WORK 
Several researchers have focused on proposing context 

aware call prediction algorithms that could be used to create 
adaptive contact or speed dial list interfaces. In [13], an 
approach to predict outgoing calls analyzing historical mobile 
call log data is described. Three context dimensions (number of 
calls with each contact, monthly and daily regularity) are 
combined to capture the frequency and regularity of 
communication behavior. Geographic location is not used; 
however the authors refer to it as a possibly important factor 
for calculating the weight of each contact in outgoing 
communication and present a scenario where it would add 
value to the prediction algorithm. 



In [14], the researchers propose a prediction algorithm that 
also incorporates the dimensions of frequency and recency of 
communication with each contact. To improve the usability of 
the contact list, they present an interface for a dynamic speed 
dial widget with four contact positions. Again, location is 
mentioned as a possible contextual dimension (although not 
used in this paper) and the authors highlight the need to 
investigate it in their future work. 

Moreover, in [15] the authors present a probabilistic model 
for call prediction that is incorporated in a dynamic Intelligent 
Address Book that can be used to save time from searching for 
a phone number in a typically lengthy contact book. Location 
is once again identified as a possibly appropriate contextual 
cue for the task of contact retrieval, although without being 
used as a context cue or without further investigation on its 
importance. 

Another related work can be found in [16], where a method 
for modeling social and personal context is presented and 
semantic location is part of the context model. The model is 
used by a smart phonebook application that recommends 
contacts based on the user’s current situation. The researchers 
performed an evaluation of their application with only one 
participant and only for a short period (12 days) without 
actually examining the impact of any of the individual 
contextual cues to the prediction performance. Although such a 
limited evaluation cannot provide reliable results, we should 
note that the inclusion of location did not seem to improve 
performance, as the reported prediction accuracy is close to 
that presented in [15] and [7] (around 70% for 5 suggestion 
entries). 

Finally, exploiting co-occurrence of behavior patterns of 
mobile users is another approach for predicting outgoing call 
events and providing UI call shortcuts [17]. Semantic place 
(e.g. home, work, outside) is considered part of the user’s 
context in this case. As the prediction engine provides 
suggestions according to a confidence prediction level and not 
when this level is below a specific threshold (no guess 
situation), the researchers present the trade-off between recall 
and precision. To directly compare with other research efforts 
on call prediction, one should consider the case where recall is 
100% and we can see that in this case the accuracy is close or 
even lower to other outgoing call predictors (around 30% for 1 
suggestion, 45% for 3 suggestions and 55% for 5 suggestions). 

While location is widely considered as a candidate context 
dimension for adaptive contact list interfaces, research on its 
effect on mobile communication, and especially for the case of 
outgoing phone calls, is limited. We have found just three 
examples in literature where this problem is considered. 
Firstly, in [18], the authors analyzed one year of mobile 
telecommunications data and investigated the relationship 
between people’s calls and their physical location. They 
considered pairs of users that communicate with each other and 
they discovered that more than 90% of users who called each 
other have also shared the same space (cell tower), even if they 
live far apart. Moreover, they found that 69% of users who call 
each other frequently (at least once per month on average) have 
shared the same space at the same time. Additionally, in [19] 
the effect of semantic place (home, office, other meaningful, 

elsewhere, abroad) on smartphone communication services is 
examined. Regarding outgoing voice calls, it is reported that 
they are placed least intensively in the home context where, 
nevertheless, their length is the longest. Finally, in [20] a study 
that involves a questionnaire completed by mobile users 
investigated location-based phone usage, without however 
specifying the feature of the phone that was used. According to 
the reported results, most users were using their phone in the 
office during weekdays (with home being the second most 
popular answer) and while driving or at home during 
weekends. 

In summary, it can be seen that although user location 
seems to be regarded as an important contextual cue for 
predicting the next contact to be called, it has been utilized 
together with other context cues without being analyzed for its 
effect and without investigating its efficacy. 

III. METHODOLOGY 

A. Dataset 
To investigate the role of location context in predicting 

calls, we used the NOKIA Mobile Data Challenge Dataset 
[12], which is probably the richest mobile dataset currently 
available, especially regarding collected location attributes 
[11]. Recorded data were collected from mobile phones in the 
framework of the Lausanne Data Collection Campaign that 
took place from 2009 to 2011 and tracked users’ social 
interactions (calls, short messages, scanned bluetooth devices), 
location, media creation and behavior (applications usage, 
activity detection etc.). The number of participants reached 185 
(38% female) and more than 240.000 calls were logged, while 
more than 26.000.000 location points were recorded [12]. 
Location sources include GPS traces providing raw spatial 
coordinates, wireless LAN access points whose location was 
estimated by available GPS data and GSM cell towers. 
However, to protect participants’ privacy, position accuracy of 
GPS tracks was diluted. Also, since users could switch GPS or 
Wi-Fi off at will during the collection, many events in the 
dataset are not spatially tagged. 

In order to overcome this obstacle and as we wanted to 
assign a location to each call, since this information was not 
directly available, we decided to consider as a call’s 
representative position the closest location record within a 
timeframe of x minutes before or after the moment that the call 
took place. For this reason, we calculated the total percentage 
of calls for which a location was successfully assigned for 
different values of the timeframe x (Table I). When the 
timeframe equals to 15 minutes this percentage is higher than 
70%, which seemed to be a fair threshold value. As it can be 
observed, expanding the timeframe window by 15 minutes 
results only in an additional 1% of geo-located calls, while, 
undoubtedly, uncertainty about the actual position of the user 
at the call time increases. Consequently, we decided to adopt 
the timeframe of 15 minutes, as we believe that it is quite a 
short period to consider that the location of the user remains 
practically unchanged, at least at a city level. Obviously, for 
some calls it was not possible to assign a location due to lack 
of location records within this timeframe. Setting a shorter 
timeframe would result in even more calls without a matched 



position, while as already discussed a longer timeframe would 
introduce a higher degree of uncertainty as regards the 
accuracy of the assigned location, without significant profit 
regarding the number of geo-located calls. 

TABLE I.  TOTAL PERCENTAGE OF GEO-LOCATED CALLS FOR DIFFERENT 
VALUES OF TIMEFRAME 

timeframe x (minutes) total % of geo-located calls 
5 69,4% 

10 69,8% 
15 71.3% 
30 72.4% 
45 73.4% 
60 74.5% 

 

 

Fig. 1. Percentage of geo-located calls for each user in descending order 

After this procedure we noticed that there were significant 
variations to the volume of calls that were attributed to a 
location among the different users. There were users with more 
than 90% of successful matching between call and location 
records, but also there were users (probably switching off 
frequently the recording software) for which only 20% of call 
records could be tagged with position coordinates. We decided 
to reject from our analysis users with less than 70% of geo-
located call records as we believe that keeping users below this 
threshold could prove harmful for the reliability of our 
prediction algorithm results. Moreover, we excluded users that 
could not be considered valid for call log analysis, since some 
of them had a call log covering an extremely short period of 
time (less than 30 days), while others had too few call records 
(less than 100) or a very sparse call usage of their phone (less 
than 2.25 calls per day), a procedure also followed while 
carrying out the experiments described in our previous work 
[7]. These extreme characteristics can be explained, since there 
were users who left the experiment early or others who often 
decided to turn off the recording software, according to the 
dataset’s documentation. At the end, we were left with 54 
users, which is not very far away from the number of 80 users 
distinguished as those with the highest quality location data for 
the mobile data challenge [12], taking into account that we 
additionally consider communication quality as an exclusion 
factor. The average percentage of calls that were tagged with 
location information for these users is 82,05% (sd=5.42%), 

while in Fig. 1 we show the distribution of geo-located calls’ 
percentages for each user. 

B. Physical vs Semantic Location 
Physical location refers to an absolute geographic position 

on the surface of the earth, usually expressed as a pair of 
geographic coordinates. An address like Downing Street 10, 
London, UK can be derived from location coordinates and 
from this, one is able to understand in which country, city and 
specific area the geographic point belongs. On the other hand, 
semantic location implies the attachment of a semantic tag to a 
location, such as “home”, “work”, “university” etc. 

Due to the fact that the available location data from GPS 
receivers were modified to protect the participants’ privacy and 
since the accuracy from sources such as wireless LAN access 
points and cell towers is low, we decided to examine the 
impact of physical location to outgoing call communication as 
a first step of our research and leave semantic location for 
future research. This context dimension could prove useful for 
scenarios like the following: 

“George grew up in a small town of western Greece. After 
graduating from high-school he moved to Athens as he found a 
good job opportunity. From time to time, he visits his 
hometown where his parents still live. When being there, he 
usually calls his childhood friends and arranges to meet them 
at their favorite pub. Although they do not communicate often 
when he is in Athens, they still feel close to each other.” 

“Maria works for an ICT company based in London. 
However, she often travels abroad, to the company’s office in 
Madrid. When in Madrid, she often calls her local colleagues 
from her mobile phone, while when she is at home they mostly 
communicate via Skype or email.” 

A similar situation is also described in [13], where location 
is proposed as a useful contextual dimension for outgoing call 
prediction for users that spend periods of their lifetime moving 
between different countries. These scenarios emphasize how 
communication behavior may change when users move to a 
different physical location at the level of another city in the 
same or another country. In this work, we focus on the effect of 
location changes at this level. 

C. Location Clustering 
To perform our analysis, we clustered for each user all geo-

located calls at a city level. There are several algorithms for 
spatial clustering of geographic tracks, with one of the most 
widely used in bibliography being DBSCAN [21]. 

In DBSCAN, the definition of a cluster is based on the 
notion of density-reachability. A point q is directly density 
reachable from a point p, if it is within a given distance ε from 
p. A point q is density reachable from a point p if there is a 
sequence of points p1,...,pn with p1=p and pn=q where each pi+1 
is directly density-reachable from pi. Two points p and q are 
density connected if there is a point o such that both p and q are 
density reachable from o. A cluster satisfies the following 
properties: i) all points within the cluster are mutually density-
connected and ii) if a point is density-reachable from any point 



of the cluster, it is part of the cluster as well. Points that are not 
part of any cluster are considered as noise. 

The algorithm requires two parameters: the minimum 
distance ε to consider two points directly density reachable and 
the minimum number of points minPts required to form a 
cluster. The appropriate values for these parameters depend on 
the dataset and on the purpose of clustering and are usually 
empirically defined. After experimenting with different values 
of these parameters and having in mind that we wanted a city 
level clustering, while there was no point for clusters with a 
very small number of calls, we decided to use an ε value of 5 
km and set the value of minPts to 2.5% of the total calls of the 
user. Higher values of the ε parameter resulted in clusters 
covering much larger areas (e.g. the clusters depicted in Fig. 2 
where ε = 10 km), while lower values resulted in distinct 
clusters within the same city (as shown in Fig. 3 where ε = 3 
km) or higher percentage of points characterized as noise. On 
the other hand, higher values of the minPts parameter resulted 
in higher percentage of noise calls (which however often 
seemed optically to form clusters at specific areas) and lower 
values led to the formation of clusters consisting of a very 
small number of calls (often < 10). An example of the formed 
clusters for one of the participants is shown in Fig. 4. In Fig. 5, 
another example of a clustering with a high percentage of noise 
data is depicted. We can see that noise calls seem to be either 
isolated calls at places where the user does not have frequent 
presence or calls between two clusters, probably while moving 
from one location to another. 

 
Fig. 2. Calls clustering with ε = 10 km 

 
Fig. 3. Calls clustering with ε = 3 km 

 
Fig. 4. Map of the clustered calls (4 clusters) for a user in the dataset. 

Markers with the “N” symbol represent calls classified as noise. 

 
Fig. 5. Map of the clustering for the calls of a user with a high percentage of 

noise data. 

IV. DATA ANALYSIS 

A. Clustering Results 
After applying DBSCAN for the spatial clustering of each 

user’s calls, we observe that twenty users appeared to have 
voice communication only while being in one location 
(cluster). These users do not present any significant mobility 
during the period that they participated in the experiment. The 
rest of them have calls distributed from two to five clusters as 
shown in Table II. 

TABLE II.  DISTRIBUTION OF CALLS IN THE CLUSTERS FOR EACH USER 

User 
ID 

C1% C2% C3% C4% C5% Noise 
% 

5927 76.03 2.32 17.33   4.32 
5928 31.94 61.84    6.22 
5940 27.46 62.47    10.07 
5943 86.96 4.35    8.69 
5947 72.63 2.05 5.75 3.32 2.56 13.69 
5948 68.45 24.47    7.08 
5953 70.92 10.46    18.62 
5964 54.09 37.74    8.17 
5972 79.28 2.62 12.07   6.03 
5975 32.26 57.66 4.03 4.44  1.61 
5976 61.77 26.77 4.11   7.35 
5987 14.37 72.75    12.88 
5988 33.17 32.19 9.09 9.09  16.46 
5989 35.77 37.91 8.44   17.88 
6012 88.3 9.55    2.15 
6014 60.43 16.53 6.5 2.98 3.79 9.77 
6020 66.15 9.73 7.39 4.67  12.06 
6026 37.5 28.26 21.74   12.5 
6028 49.47 37.46 5.12   7.95 
6032 86.15 5.66    8.19 
6035 67.15 30.69    2.16 



6038 19.76 35.87 3.44 27.42 2.66 10.85 
6045 49.2 35.35 3.37   12.08 
6063 88.03 4.21    7.76 
6082 5.8 91.67    2.53 
6106 44.86 39.51    15.63 
6109 62.39 16.28    21.33 
6168 13.76 82.07    4.17 
6175 82.35 6.62 3.68   7.35 
6176 39.75 40.75 11.75   7.75 
6178 65.22 24.71 3.98   6.09 
6192 65.6 32.48    1.92 
6194 60.77 22.88 5.96 7.69  2.7 
6197 79.1 19.73    1.17 

 
In Table III we present a summary of our findings 

regarding the number of distinguished clusters. We observe 
that users usually communicate from a small number of 
geographic locations, which is in line with the results presented 
in [22]. Another important observation from Table II is that for 
the majority of users with more than two clusters, there is a 
cluster with a high percentage of calls, ranging from around 
60% to 90%. We could assume that this cluster represents the 
place where they live and spend most of their time. For some 
users, we can see that there is a second cluster with a 
significant percentage of calls around 30%, which could be a 
location that they spend a considerable fraction of their time. A 
plausible explanation for these users might be that they may be 
commuting daily to another city in order to work or study. For 
example, we found that user 6028 has 99% of all 
communication within cluster 2 (37.46% of her total 
communication) performed during weekdays. Other examples 
include users 5976 and 5989 with 98% and 100% of their 
communication within the second larger cluster taking place on 
weekdays. Finally, clusters with a very low percentage of calls 
indicate places that are not often visited and could be indicators 
of traveling for business or leisure. 

TABLE III.  SUMMARY OF CLUSTERING RESULTS 

Number of Clusters Number of Users 
1 20 
2 17 
3 10 
4 4 
5 3 

Total 54 

B. User Types 
Our next step after clustering each user’s communication 

based on location was to analyze the percentage of outgoing 
calls with the contacts that each user calls per cluster. After this 
analysis we observed that there are different types of users 
regarding their outgoing communication patterns per location. 
In this section we present these user types and some figures 
representing the respective patterns. 

As we have already mentioned, there are users that all their 
communication was clustered in just one geographic area. 
These users seem not to have traveled (or not have had mobile 
phone voice communication when travelling or even not 
having enough communication in another place to form a 
cluster) during the period that they participated in the 
campaign, so we could say that they are characterized by low 

mobility for that time interval. Using physical location context 
to predict the most probable contacts to call will not have any 
effect on prediction accuracy for this type of users, so they 
were omitted from further analysis. 

Another observed type includes users that while they make 
phone calls from different clusters, their communication 
pattern remains practically unaffected when changing physical 
location, i.e. they call the same contacts regardless of their 
current location. As a typical example, we can see in Fig. 6 a 
graph showing the percentage of outgoing calls to each contact 
broken down by location cluster for the user with ID 6168. 
This user makes phone calls from two clusters, while from 
Table II we can see that the majority of this communication for 
this user takes place within cluster 2. For all contacts that are 
called in both clusters we observe percentages of outgoing calls 
that are very similar, irrespectively of the location cluster. Of 
course, in the cluster with the majority of communication there 
are calls to contacts that are not called from the other cluster. 
However, for this user we observe that the percentage of calls 
to each of these contacts is very low, below 5%. For this type 
of users one would again expect that physical location context 
would not add much value to the prediction procedure. 

On the other hand, it seems that there is a third user type: 
users for which we observe important deviations regarding 
outgoing communication patterns among the different clusters. 
Such a case is presented in Fig. 7, where we can see the 
percentage of outgoing calls to each contact per cluster for user 
5947. It is obvious that this user has a completely different 
communication behavior within each cluster. However, this 
user type could also include users with observed deviations 
only in some of the clusters, which means that their behavior 
changes only in some of the places that they make phone calls 
from. Consequently, one could expect that prediction accuracy 
might improve for this type of users if the physical location 
context is considered in a prediction algorithm. 

 
Fig. 6. Percentage of outgoing calls to contacts per cluster for user with ID 

6168 



 
Fig. 7. Percentage of outgoing calls to contacts per cluster for user with ID 

5947 

Wanting to validate our visual observations, we decided to 
define a metric that indicates variations of the user’s 
communication within the geographic clusters. Since low 
communication contacts are insignificant for predictions, we 
excluded those with a percentage of communication below 
10% in all clusters. For the remaining contacts, we computed 
for all cluster pairs the Euclidean distance between the 
contacts’ communication frequency vectors and we set the 
metric equal to the average of these pair values. A lower value 
of the metric indicates a lower variation of communication 
among the different clusters. Next, we applied the k-means 
algorithm on this metric for our users (excluding those that had 
not traveled at all) for k=1,2,3 and 4. An attempt to run the 
algorithm for three clusters provided better results by reducing 
the within-clusters sum of squares. This means that there is 
another user type between the two that we described in the 
previous two paragraphs. This type represents users in an 
intermediate state regarding their communication deviation 
within different clusters. 

A summary of the results of the k-means clustering 
algorithm is presented in Table IV. Ultimately, our dataset of 
54 users is split in 4 user types as follows: ‘no mobility’ user 
type has 20 users, ‘low communication deviation’ user type has 
13 users, ‘medium communication deviation’ user type has 15 
users and ‘high communication deviation’ user type has 6 
users. 

TABLE IV.  NUMBER OF USERS FOR EACH USER TYPE 

User Type Number of Users 
No mobility 20 

Low communication deviation 13 
Medium communication deviation 15 

High communication deviation 6 
Total 54 

C. Prediction Results 
In this work, we wanted to examine the effect of physical 

location context, exclusively, on outgoing call prediction. For 
this reason, we modified our original prediction model [6][7] to 
use only frequency as a contextual cue, in order to exclude the 
effect of recency dimension. For the purpose of establishing a 
performance baseline, we define the prediction metric to be the 

total frequency of outgoing calls for each contact. Such a 
choice simulates the “frequently called” screen of the contact 
list application on some Android devices. In order to compare 
with the case when physical location context is enabled, we 
perform a second experiment where we replace this dimension 
with the frequency of outgoing calls with each contact within 
the cluster that the user is at the time of prediction. In other 
words, we only take into account calls made from the place 
where the user is. As explained in the previous section, we 
would expect a noticeable impact of this contextual cue mainly 
for users with a deviated communication frequency distribution 
among different location clusters.  

In our original work, we used a temporal training window 
to assist prediction. This approach would have been 
problematic here, since it would result in empty training sets 
for low communication activity clusters that the user had not 
visited during the training period. To overcome this obstacle, 
we made a slight modification of the algorithm and switched 
from a temporal training window to a numerical one, by 
computing for each user the calls made per day and 
multiplying with the number of days we wanted to include in 
our training. Using a training window of 15 days (as in our 
previous work) we traverse the users’ call logs and for each 
call after this period we simulate the prediction procedure that 
provides weighted suggestions for presentation in an adaptive 
interface with 1, 3 and 5 suggestion positions respectively. The 
prediction accuracy results for each user type group are 
presented in Table V where for each number of suggested 
contacts, the left column shows the percentage of successful 
predictions for the base experiment (B1, B3 and B5 
respectively) and the right column shows the impact of 
physical location as the difference of the two percentages 
(ΔL1, ΔL3 and ΔL5 respectively). We should note that users 
who present no mobility were omitted from this table, since 
there is no difference in prediction accuracy when running the 
two experimental simulations. 

Overall, the inclusion of location context had an average 
impact differential of 0.09% on our users (sd=2.90%) for 1 
suggestion, -0.47% (sd=2.10%) for 3 suggestions and -0.41% 
(sd=3.35%) for 5 suggestions. However, a statistical analysis 
shows that these differences are not statistically significant. 

When considering the three categories for users that show 
mobility, we have the following results: For ‘low 
communication deviation’ users there is an average impact 
differential of -1.00% (sd=2.16%) for 1 suggestion, -1.15% 
(sd=2.23%) for 3 suggestions and -1.30% (sd=1.75%) for 5 
suggestions. Results are statistically significant (paired samples 
t-test) only for the case of 5 suggestions (t(12)=2.694 p=0.02). 
For ‘medium communication deviation’ users there is an 
average impact differential of 0% (sd=2.24%) for 1 suggestion, 
-0.20% (sd=1.86%) for 3 suggestions and -1.20% (sd=2.11%) 
for 5 suggestions. Results are statistically significant (paired 
samples t-test) only for the case of 5 suggestions (t(14)=2.201 
p=0.045). Finally, for users belonging to the ‘high 
communication deviation’ group there is an average impact 
differential of 2.67% (sd=4.41%) for 1 suggestion, 0.33% 
(sd=2.34%) for 3 suggestions and 3.50% (sd=5.68%) for 5 
suggestions. Results are not statistically significant for any 
suggestion list size. 



As we can see, the results indicate that incorporating the 
physical location context in the prediction algorithm does not 
necessarily lead to improved prediction accuracy. When the 
differences are not statistically significant, the prediction 
results are not impacted by location. In most cases where the 
results are statistically significant, the differences are only 
marginal, while there are users for which the algorithm 
provides slightly worse or slightly better results. For users that 
belong to the ‘low communication deviation’ group, with 
similar call patterns within all clusters this seems normal. 

TABLE V.  EFFECT OF PHYSICAL LOCATION ON PREDICTION ACCURACY 
(ΔLX) ON THE RESULTS OF BASELINE PERFORMANCE (BX) FOR 1,3 AND 5 

SUGGESTIONS 

User 
ID 

B1% ΔL1% B3% ΔL3% B5% ΔL5% 

Low communication deviation users 
5927 91 0 96 -1 97 0 
5940 37 2 66 2 74 -1 
5948 57 0 77 -3 81 -1 
5953 19 -1 34 0 44 2 
5964 12 0 28 0 34 -2 
5988 61 -5 78 -1 83 -4 
6012 71 -1 91 0 95 -1 
6082 57 0 81 0 86 -1 
6106 19 -4 42 -3 52 -2 
6168 32 -1 70 0 89 -1 
6176 53 -4 71 -7 77 -5 
6192 14 -1 33 0 47 0 
6197 37 2 68 -2 79 -1 

Medium communication deviation users 
5928 77 -2 93 -1 95 0 
5943 11 0 29 0 41 0 
5972 19 2 42 0 51 0 
5976 32 6 66 2 77 -2 
5987 16 2 40 0 56 -1 
5989 52 1 71 0 78 0 
6014 18 -1 35 2 49 1 
6026 28 0 60 -5 75 -7 
6035 22 -1 42 2 58 -1 
6038 43 -2 82 0 96 0 
6045 51 -1 63 1 71 1 
6063 35 1 53 0 62 -1 
6109 35 0 51 0 60 -1 
6178 21 -2 45 -3 58 -4 
6194 27 -3 56 -1 70 -3 

High communication deviation users 
5947 25 1 51 0 60 1 
5975 51 11 67 -3 75 13 
6020 22 1 42 3 52 8 
6028 49 4 74 3 82 0 
6032 58 0 76 0 84 0 
6175 15 -1 38 -1 47 -1 

Next, we analyze some typical examples, representative of 
the majority of users existing in the dataset under review, in 
order to explain the results for users who follow different 
communication patterns in different clusters (medium and high 
deviation user types). Firstly, we observe that some of them 
place the majority of their outgoing calls mainly from one 
cluster, thus deviations of communication patterns within the 
other clusters play a minor role in prediction accuracy. Such a 
typical case is user 5947 (high deviation) which mainly 
communicates from cluster 1, as shown in Table II. In Fig. 8, 
we observe that for this user the contact frequency distribution 
for cluster 1 almost coincides with contact frequency 
distribution for the total outgoing communication. 

A different explanation stands for participants such as 5976 
(medium deviation). This participant places phone calls from 3 
clusters, however only 2 clusters have significant impact in his 
communication behavior, since communication from cluster 3 
accounts only for around 4% of total communication (see 
Table II). If we disregard contacts with a call frequency below 
10% (grey area in Fig. 9), which are usually difficult to predict 
from call log analysis, we can see that there are only 3-4 
remaining contacts. Calls to such a small group of contacts are 
easy to predict even without taking into account context like 
location when providing 3 or 5 suggestions. In this example, 
this is even clearer as the top contacts for cluster 1, cluster 2 
and total communication are the same in a different ranking. 

 
Fig. 8. Frequency distribution of outgoing communication for user with ID 

5947 

 
Fig. 9. Frequency distribution of outgoing communication for user with ID 

5976 

 An observation of the call logs of our users and an 
examination of failures of the prediction procedure when 
location is used compared to the normal frequency dimension, 
shows that these failures usually occur when there is a 
transition from one cluster to another and especially when the 
destination cluster is not the one with the most communication 
activity. When location is used, we observed that the training 
window for the “secondary” clusters, which users do not visit 
often or spend short time periods within, may contain older 
calls from previous visits of the user. As a result, this training 



window fails to appropriately represent recent communication 
pattern of users, which provides better results for future 
prediction [15]. When users stay for a long time (>15 days) 
within a cluster, the two methods gradually provide the same 
results (as they both analyze the same training sets to generate 
suggestions). Consequently, these transition failures are critical 
for the performance of the algorithm when location is taken 
into account. 

V. CONCLUSIONS 
In this paper we examine the impact of physical location as 

a contextual cue for predicting the next callee, a function useful 
for the design of adaptive contact list interfaces. As already 
discussed in the introduction and related work sections of this 
paper, location is considered in literature to be an important 
contextual cue for mobile users and is often highlighted as a 
possible candidate dimension for outgoing call prediction. 
However, as far as we know, this is the first attempt to assess 
the effect of location on call prediction and we believe that this 
is the main contribution of our work. 

We showed that using physical location for outgoing call 
prediction does not necessarily lead to prediction accuracy 
improvements, while in some cases (5 suggestions, low and 
medium communication deviation groups) the statistical 
analysis showed a statistically significant slight decline. We 
presented our explanation for this fact based on the distinct 
user types that we distinguished in our dataset. While the 
results were expected for users that follow similar 
communication patterns in all places they visit, it was a 
surprise to note that the prediction accuracy was not improved 
for users that seem to change their behavior while moving 
between different areas. We analyzed call patterns for some 
typical users which belong to this category and we provided 
our arguments to explain our observations. We found that there 
were users for which communications within the clusters 
where they present deviated behavior represent only a small 
percentage of their total communication and as a result possible 
prediction accuracy improvements for calls from these places 
do not affect significantly total prediction accuracy. Other 
users were found to mainly interact with a small number of 
contacts, which are easy to predict independently of the 
addition of location. In this case, interactions with other 
contacts are infrequent, so these calls usually fail to be 
predicted. This is in line with the results presented in [4] where 
it was found that 84% of phone calls are exchanged with the 
top 5 contacts in terms of frequency, while we have also 
concluded in similar observations in [23].  Moreover, for the 
case of suggestion lists with 1 and 3 entries [24] suggests that 
the most frequently contacted people are those with the higher 
tie-strength and as such it is normal to be used independently 
of location. 

An observation of users’ call logs and a step by step 
application of the algorithm on them revealed that there are 
often failures when users are moving from the main 
communication cluster to other locations, since the training sets 
used in these ‘secondary’ clusters fail to capture recent call 
trends. A possible improvement could arise from a 
combination of the location dimension with the recency 

dimension and this is a direction for future work we intend to 
follow. 

Of course, we cannot unreservedly generalize the 
conclusions from this analysis. Although at this time there does 
not exist a more comprehensive publically available dataset on 
which to test our algorithms, it is probable that our dataset did 
not contain users that fell into the situations described in the 
scenarios cited in section III.B. It is possible that physical 
location plays an important role in communication behavior for 
people that their lifestyle involves frequent travelling and 
communication with more contact than the average user. We 
should emphasize at this point that results are encouraging for 
users belonging to the high communication deviation group, 
which counts only 6 members, a number too low to lead to 
statistically safe conclusions. However, we believe it is 
important that this analysis indicates that physical location may 
not be as useful a context dimension for call prediction for the 
majority of mobile users as one might expect and as literature 
on this subject suggests. Although location in our work is 
based on a spatial granularity level that can be assumed to 
carry semantic interpretation (city), it is possible that finer-
grained semantic representations of location (e.g. “home”, 
“work”, etc.) might yield better results.  

In a previous publication [7] we performed a preliminary 
experiment to evaluate the effect of temporal context on 
prediction accuracy. Temporal context can be used to detect 
patterns of movements and semantic information about 
location. Again, the results were not encouraging as prediction 
accuracy slightly decreased. If we combine this conclusion 
with the results presented in this paper, it becomes apparent 
that adding contextual dimensions in a prediction algorithm is 
not an undertaking that can be taken lightly. Our work shows 
that vector context models require a thorough investigation of 
the effect of vector dimensions and that the results might be 
counter-intuitive. This was the reason for proposing a 
prediction procedure based on frequency and recency of 
communication, which are two dimensions that we have 
thoroughly examined [23]. A similar conclusion that confirms 
our argument can be inferred from [2], where although not 
directly underlined by the authors, it is cited that not all 
contextual dimensions used for prediction had the same 
contribution in the prediction output. 

In the future, apart from mixing location with recency, we 
intend to analyze other available datasets, including one dataset 
collected in an experiment that we organized in order to 
evaluate our adaptive user interface. We hope to be able to get 
further insight regarding the effect of physical location and 
other contextual cues (semantic location, activity, scheduled 
calendar events etc.) on call prediction. 
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