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Abstract We introduce HotCity, a city-wide social context crowdsourcing platform

that utilises user’s current location and geo-tagged social data (e.g., check-ins,

‘‘likes’’ and ratings) to autonomously obtain insight on a city’s tacit social aware-

ness (e.g., ‘‘when is best time and where to go out on a Saturday night?’’). HotCity is

available as a mobile application for Android and as an interactive application on

pervasive large displays, showcasing a heatmap of social buzz. We present the

results of an in-the-field evaluation with 30 volunteers, of which 27 are tourists of

the mobile app, compare it to a previous evaluation of the pervasive display app and

also present usage data of free use of the pervasive display app over 3 years in the

city of Oulu, Finland. Our data demonstrate that HotCity can communicate effec-

tively the city’s current social buzz, without affecting digital maps’ cartography

information. Our empirical analysis highlights a change in tourists’ foci when

exploring the city using HotCity. We identify a transition from ‘‘individual [pla-

ces]’’ to ‘‘good [areas]’’ and ‘‘people [choices]’’. Our contributions are threefold: a

long-term deployment of a city-wide social context crowdsourcing platform; an in-

the-field evaluation of HotCity on mobile devices and pervasive displays; and an

evaluation of cities’ tacit knowledge as social context as a denominator in city

planning and for the development of future mobile social-aware applications.
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1 Introduction

Travelers increasingly rely on mobile applications to access relevant city

information. In particular, they will seek information on public transportation

(e.g., buses, trains), landmarks they can visit and other venues such as restaurants,

cafes, and shops. Many applications exist for popular big cities that attract global

tourism. However, the rich yet user agnostic information that these services provide

can be bleak and non-informative for users who simply try to decide what to do and

where to go. On such occasions, more favorable information is obtained from

friends’ or even strangers’ recommendations. To answer questions such as ‘‘which

is the best restaurant on a Friday evening?’’ or ‘‘which are the famous and busy

areas on Saturday?’’, we still rely on the concierge.

To overcome the scarcity of tacit knowledge in mobile information-finding

applications, we created HotCity. HotCity is not just an application. HotCity

consists of an infrastructure for sharing geo-tagged high-level and user-subjective

place information harvested from locals’ social networks (e.g., Foursquare). With a

map and heatmap mashup, HotCity highlights mobility traces and preferences, all

accessible through a mobile application. A heatmap visualization of social context,

added as a middle layer between the spatial background (i.e. street map) and

additional point of interest overlays provides users insight into locals’ tacit

preferences in the city.

Our work heavily draws on the concept of venues in social networks, which has

become popular with social networks based exclusively on them (e.g., Foursquare),

actively used by several million users. Other networks (e.g., Facebook, Google?)

also integrate formal venue representations with their existing structure. These

representations allow users to explore venues and allow content tagging (e.g.,

checking into them, rating, indication of a favorite spot). Research by Lindqvist

et al. (2011) reports that this data is generated not randomly but under a very

specific context: users will only tag venues they consider important, interesting or

indicative of a social identity and lifestyle choice. Access to this personalised yet

important data opens up significant new opportunities for the provision of services

to a range of interested parties, in particular for tourism services. HotCity is one

example of how such information can be exploited to provide city’s tacit social

context to everyone.

In this paper, we discuss how the use of heatmaps in the HotCity service affects

the user experience and behaviour by providing tacit social context to tourists in two

distinct use cases: via large, public pervasive displays, and via a mobile application

for smartphones. The use case of pervasive displays was examined in a previous

paper (Komninos et al. 2013a) so here we focus on discussing the evaluation of the

smartphone use case and compare the outcomes between pervasive displays and

smartphones, as appropriate. Our insights from both use cases show that despite the

increased visual complexity, as compared to simple digital maps, the users’

cognition in terms of mental demand and perceived effort is very modestly

impacted. Use of the heatmap results in a shift of urban exploration, from a focus on

individual venues and towards urban areas. We further report on the insights gained
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through statistics of real in-the-wild use of the pervasive display application over

3 years in the city of Oulu where it was deployed. The paper begins with a review of

relevant literature, introduces the HotCity platform architecture and discusses the

two field experiments and in-the-wild use of the system in the next three sections.

Finally, the paper concludes with a section discussing the outcomes and

implications of our work.

2 Related work

When visiting a city, one traditionally seeks information on a city map, reads a

guidebook, or visits a tourism office. Although useful to display cartographical

information effectively, such city maps do not reflect citizen-generated information.

By citizen-generated information, we mean information such as ‘‘Which are locals’

favorite restaurants?’’, ‘‘Where to find best prices?’’. To overcome such limitation, in

recent years, a new category of city guidebooks emerged, dubbed ‘‘personalized

guides’’. These guides are quite often written by previous city visitors, locals, and can

be, to some degree, autonomously and algorithmically deducted by counting visits to

tourist points of interest (POI’s) (Souffriau et al. 2008). However, these providers aim

at the general public and are not tailored to the individual visitors’ needs, tastes or

interests. For our literature review, we focus on tourism-oriented system infrastruc-

tures including mobile and/or access to urban mobility patterns (Table 1).

2.1 Ubiquitous computing systems for tourism

The term ‘‘ubiquitous computing’’ refers to the use of mobile and pervasive

computer systems to deliver information and services to user in a range of indoor or

outdoor environments. Contrary to a tourism office, and more similar to the city

maps and guides, a mobile device such as a smartphone can be carried around while

visiting a city. For example, Chevrest et al.’s (2000) GUIDE mobile applications

offered a digital version of a city guide. Context-aware mobile recommender

systems, such as Magitti (Bellotti et al. 2008), inferred the user activity and

displayed suggestions for related activities. COMPASS (van Setten et al. 2004)

provided tourists with recommendations, centralized in a registry maintained by

third party service providers. CRUMPET’s (Poslad et al. 2001) ‘‘blackbox’’

approach allows service and content providers integration using dedicated

interfaces, where the user can request information and recommendations based on

his location. Using artificial intelligence and agent systems, Gullivers’ Genie

(O’Hare and O’Grady 2003) took a proactive stance to deliver content, displaying

nearby POIs and multimedia (e.g., photos, videos) autonomously. Use of extended

contextual information, including weather, location, time, social network data and

user personal preference for POI recommendation, has been proposed in Meehan

et al. (2013). Braunhofer et al. (2014) describe a solution to the cold-start problem in

recommendations by acquiring a user’s personality profile and asking them to rate a

number of randomly selected venues, acting as a training set, in various lab-based

sessions. The work was later extended to evaluate the system against further
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Table 1 Summary of literature review on mobile and urban mobility systems

Paper Research goal Year Participants Duration

Alghamdi

et al.

E-tourism: mobile dynamic trip planner 2016 Dataset –

Alves et al. Semantically describing a POI with Wordnet 2009 Dataset –

Bellotti et al. Context-aware mobile recommender by inferring

current and predicting users’ future activities

2008 Lab; urban 1 day;

1 week

Bergé et al. Exploring smartphone-based interaction with

overview ? detail interfaces on 3D public displays

2014 Lab 2 sessions

Braunhofer

and Ricci

Selective contextual information acquisition in travel

recommender systems

2017 Dataset –

Braunhofer

et al.

Techniques for Cold-Starting Context-Aware

Mobile Recommender Systems for Tourism

2014 Lab,

dataset

4 sessions

Calabrese

and di

Lorenzo

Opportunistically use location data to estimate

weekday and weekend travel patterns

2011 Dataset –

Calabrese

et al.

Using eigen decomposition on Wi-Fi data to identify

locations

2010 Campus 14 weeks

Carter et al. No app needed: enabling mobile phone

communication with a tourist kiosk using cameras

and screens

2017 – –

Cheverst

et al.

Understanding the user experience of a context-aware

guide

2000 Urban 4 weeks

Churchill

et al.

Using public displays to inform community building

and maintenance

2003 Campus 6 months

Colomo-

Palacios

et al.

Towards a social and context-aware mobile

recommendation system for tourism

2017 Lab 1 session

Crandall

et al.

Using geotagged photos (Flickr) and content analysis

to find popular landmarks

2009 Dataset 6 months

Fisher et al. Using online maps’ interaction to highlight

geographic areas

2007 Dataset 1 year

Girardin

et al.

Using cell phone network data and geotagged photos

to analyse tourism activity

2008 Dataset 3 months

Grubert et al. The utility of magic lens interfaces on handheld

devices for touristic map navigation

2015 Urban, lab 2 sessions

Herzog Recommending a sequence of points of interest to a

group of users in a mobile context

2017 Lab 1 session

Jiang et al. Modeling human mobility patterns in streets 2009 Urban 6 months

Kim and

Kotz

Modeling mobility from Wi-Fi access points data 2005 Campus 2 months

Koch et al. Information radiators: using large screens and small

devices to support awareness in urban space

2017 – –

Kostakos

et al.

Using Bluetooth scans to sense, model and visualise

urban mobility and copresence networks

2010 Urban 1 year

Meehan

et al.

Context-aware intelligent recommendation system

for tourism

2013 – –

O’Hare and

O’Grady

Intelligent agents for tourism guidance 2003 – –
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datasets to determine the contextual factors most relevant for recommending items

to users (Braunhofer and Ricci 2017). More recently, Colomo-Palacios et al. (2017)

describe the successful implementation of a POI recommendation system based on

location and a biologically-inspired AI recommendation engine that includes POI

rating and opinion mining. Umanets et al. (2014) demonstrate that collaborative

filtering (via social networks) and the user’s own previous visits and ratings benefits

a recommendation system for POIs. In a system that recommends routes between

two points, Herzog (2017) show how the qualitative properties of the POIs in an

area (e.g. type, suitability during various times in the day, presence or absence of

other similar POIs in the area) can be used, briefly evaluate the generated routes in

the lab.

Public information displays across a city can also be used to provide information

captured from several sources (Hinrichs et al. 2013; Linden et al. 2012). Early

research on public displays was mostly conducted on single-purpose bespoke public

displays, for example Plasma Posters (Churchill et al. 2003) or GroupCast

(McCarthy and Costa 2001), while more recently. Recent advances in public display

technology have enabled increasing numbers of displays to be deployed and

installed in public locations. These deployments are increasingly making a

transition from static ‘‘broadcast’’ displays to interactive ones (e.g. Koch et al.

2017 introduce the hybrid concept of information ‘‘radiators’’—broadcasting to, and

interacting with users). This transition to interactive displays, where members of the

public are empowered to control and use the display, has opened a range of new

research challenges and at the same time has broadened the design space for public

displays. Whereas on ‘‘broadcast’’ displays the primary challenge is designing for

the effective sharing of information with the public, interactive displays’ main

design requirement is that of interaction: designing and implementing a mechanism

for members of the public to browse, navigate and identify information that the

display makes available. The ad-hoc synergy between public displays and user

devices is still an ongoing subject of research, with some work focusing on

supporting this synergetic approach (Grubert et al. 2015; Bergé et al. 2014) while

others focusing on eliminating it (Carter et al. 2017).

Table 1 continued

Paper Research goal Year Participants Duration

Quercia et al. Measuring audiences outdoors in circumvented areas 2011 Dataset 1.5 months

Souffriau

et al.

Use applied machine learning for creating mobile

guides based on categorized POIs

2008 Dataset –

Tammet

et al.

Crowdsourcing geo-tagged databases to locate,

describe and rate potential POIs

2013 Dataset –

Umanets

et al.

GuideMe-ATourist guide with a recommender

system and social interaction

2014 Lab 1 session

van Setten

et al.

Context-aware mobile recommender by leveraging

users’ profile and current location

2004 Lab 1 session
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2.2 Urban dynamics for tourism applications

To improve the recommendations provided to tourists from ubiquitous computing

systems, researchers have attempted to capture and quantify urban dynamics, i.e. to

use sensing methods for the capture of urban movement across a city. The premise

behind this idea is that by identifying the mobility patterns in an environment, a

system can recommend to a tourist the venues that are worth visiting. These methods

include geo-tagged photos, social network data, mobile phone logs, smart card

records, taxi/bus GPS traces, and Bluetooth sensing (Calabrese and di Lorenzo 2011;

Girardin et al. 2011; Jiang and Yin 2008; Kostakos et al. 2010; Bao et al. 2012; Yang

et al. 2013; Majid et al. 2013; Quercia et al. 2011). These demonstrate that it is

possible to develop a better understanding of city-dwellers’ space use over time, and

subsequently inform important decisions about development, growth, and invest-

ment across a city, as well as tourism. In other words, understanding how various

groups of people move in a particular area, and when, provides better context for

understanding the types of potential audiences for services in those areas, but also in

terms of long-term investment and development decisions (Quercia et al. 2011). As

seen in Table 1, only 4 out of 24 of the reviewed literature actually had an urban

experiment or evaluation (from a 1-week to a 1-year long deployment). Most of

previous work use existing datasets to test and evaluate methods of obtaining urban

context. This is understandable, especially considering the challenges of collecting

longitudinal and widespread sensor data from cities. However, we argue that such

approaches only capture a snapshot of what happened, and not what is happening

right now. It does not account or reflect the dynamics of a city (e.g., new business,

roads, events). Obtaining a wide-net citizens’ data is challenging and some

researchers have employed special equipment or infrastructure access to obtain it,

i.e., phone providers (Girardin et al. 2011; Quercia et al. 2011), satellite access

(Fisher 2007; Jiang and Yin 2008), router firmware (Calabrese et al. 2010; Kim and

Kotz 2005) or Bluetooth scanners (Kostakos et al. 2010).

To achieve higher granularity, researchers are increasingly turning to alternative

datasets. Analysis of user-generated content is becoming increasingly popular, for

example using geotagged photos to extract ‘‘place’’ and ‘‘event’’ information from

Flickr (Rattenbury et al. 2007). This approach was adopted by one of the first

attempts at identifying tourists and visitors in a city (Girardin et al. 2011) by

analyzing geo-tagged photographs from a 3-year period, focused on identifying

locations visited by individuals exhibiting short and focused activity in terms of

photographs taken. Alghamdi et al. (2016) discuss a system for recommending

optimal routes for trip planning, with the aim being to provide a route between two

points, that would provide the most satisfaction to the users. In their work, POIs that

for intermediate parts of the route are ranked by mining Flickr for volume of

images, as a proxy to POI importance.

Previous work has used granular Wi-Fi data (Calabrese et al. 2010; Kim and Kotz

2005), but so far has been limited to campus scale. Often, mobility analysis attempts

to cluster locations based on similarity to each other in terms of volume of visitors.

For instance, researchers have demonstrated a bottom-up approach to grouping

locations into clusters that exhibit similar temporal mobility patterns in terms of
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volume of visits (Kim and Kotz 2005), and subsequently labels these clusters

according to a tacit understanding of both the locations as well as the mobility

patterns there (Calabrese et al. 2010).

2.3 Recommending areas instead of single venues

Venue recommendation has benefited greatly from research such as that, mentioned

in the previous section. Typically, venue recommendations are provided as lists, or

displayed as markers on digital maps. A large concentration of map markers may

hint to the user that a particular area of the city is populated with highly

recommended venues, however, this approach is not without problems. Large

marker densities can result in occlusion and selection problems, especially on small

mobile screens. Furthermore, map markers can only present spatial and not

qualitative information—just because a certain area contains fewer markers than

another, doesn’t mean that that area is less popular (for example, its venues might be

heavily popular or it might have many venues that are simply not displayed in

digital datasets, e.g. streetfood vans). In this work, our goal is to evaluate the user

usability aspects of highlighting popular spaces, i.e. geographical areas, instead of

popular points of interest. This is a critical aspect of differentiating our work from

previous literature. To illustrate the point, let us consider an example, whereby the

user gets a recommendation for a highly popular venue to visit. Upon arrival, the

venue might be fully booked (as is likely, given its highly recommended status). If

the venue is located in an area where other alternatives cannot be easily found, then

the visit will result in disappointment and frustration for the users. On the other

hand, as can be seen in many tourist guide books, experienced guides will

recommend not just single venues but whole areas and also the temporal context

appropriate for a visit (e.g. ‘‘During the evening, take a trip to New York’s Little

Italy’’). Quite often, the entire area (instead of venues) can be the focus of a tourist’s

visit, for example, taking a stroll through the market district, a historic

neighbourhood, a pedestrian street, along the river etc. Such recommendations are

entirely missed in literature, where the focus remains on recommending individual

POIs. Our hypothesis is that, providing a highlight as a background layer, instead of

a foreground layer, informs the user of location importance without obfuscating

their understanding of the underlying maps’ cartography. We extend previous work

with crowdsourcing approaches (Fisher 2007; Tammet et al. 2013) by incorporating

social network activity as it happens (e.g., Foursquare) to dynamically update and

harvest local citizens whereabouts and preferences. ‘‘Traveling as a social activity

[is] not considered’’ and the potential of incorporating external content is seldom

exploited (Schwinger et al. 2005). Our work’s contributions provide an effective

sharing of geo-fenced high-level and subjective place information that is harvested

from locals’ social networks (e.g., Foursquare), by means of a mashup highlighting

mobility traces and ‘‘heatmaps’’, at one’s pocket reach.

Notably, overlapping dynamic content on a map is not novel. Alves et al.’s

(2009) KUSCO mined the web for creating ontologies based on semantic

associations to POIs for enriching the description of a place; Crandall et al.

(2009) organized photos’ location based on visual and temporal features to pinpoint
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from where did the picture got taken; and Tammet et al.’s (2013) crowdsourcing

approach from geo-tagged databases to locate, describe and rate tourism targets in

any area of the world. With heatmaps, Hotmap (Fisher 2007) focused on location

highlighting techniques for the most frequently viewed locations. Tammet et al.’s

work (2013) is largely similar to HotCity in terms of presentation, but differs in

functionality: it does not provide a system to the general population to assess in real-

time where the ‘‘heat’’ is, utilising snapshots of the available data, without reflecting

the city’s current state. This is where HotCity makes the biggest contribution: it is a

real-time, dynamic and city-wide social context platform available to everyone.

Summarising the previous literature, we can thus conclude that while the

harvesting of urban social context has been used in previous studies (i.e. the

interactions between people and their environments as recorded via actions in social

networks), this has mostly focused on algorithmic recommendation of specific

individual venues or points of interest to users, and not wider areas where a tourist

might visit. In the cases where literature has studied the geospatial visualisation of

aggregated tacit social context information (e.g. via heatmaps), it has not concerned

itself with how it affects the users’ cognitive and decision-making processes during

application use. Finally, the use of temporal context and urban dynamics has not

been considered in this category of literature. Our work is thus positioned precisely

so as to address these gaps in literature.

3 HotCity architecture

Our HotCity prototype was deployed in the city of Oulu, a medium-sized city in

Northern Finland. HotCity aggregates information from online sources such as

social media (e.g., Foursquare) and citywide sensors (e.g., Wi-Fi location

positioning) provided by the panOULU infrastructure and produces citizen-based

spatial knowledge (Fig. 1). The data is aggregated on a webserver and is

disseminated to a variety of devices, through a purpose-built API (OpenOULU1).

Fig. 1 HotCity service infrastructure architecture

1 http://docs.ubioulu.fi/.
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In a previous publication (Komninos et al. 2013b) we investigated the use of this

data in pervasive displays, but for this paper, our primary goal is to explore users’

interaction with HotCity’s generated information using a mobile device. On a

mobile application we developed, we present a map of downtown Oulu, upon which

we superimpose our social data visualizations, allowing users to easily discover

novel, popular and interesting areas of Oulu according to user-specified contexts

(e.g., time: ‘‘Now’’, ‘‘Friday evening’’; people: ‘‘10 or more’’).

3.1 Extracting social network information

We rely on three popular social networks as data sources, Foursquare, Facebook and

Google Places APIs. For this study, we rely exclusively on data from the Foursquare

API, which allowed us to retrieve current information such as real time check-ins

and also historically derived information such as total check-ins at a specific

location. It’s worth mentioning at this point that although Foursquare used to offer a

single application for checking in and discovering places, the company has now

split the functionality across two applications. The Foursquare mobile app and

website are used to discover places (i.e. as a city guide) while the Swarm mobile app

allows users to check in. Our research data was collected prior to the split of the

service in the two apps. Regardless, the company offers a single unified API for both

functions to this date, so our methods are still applicable.

Information from Foursquare checkins is sufficient to represent the social vibe

and dynamics of a city, as demonstrated by Kostakos et al. (2010), Noulas et al.

(2012) and by Komninos et al. (2013b). Although the other APIs offer valuable data,

we exclude them from our implementation for reasons which are discussed in the

concluding sections of the paper. For the purposes of our study, we geo-fenced

various areas within the city, covering popular commercial and social areas of

interest within the city (henceforth: a ‘‘listening post’’). To identify such posts, we

interviewed locals who provided hints on where these locations should be, where

they circled all the famous areas around Oulu on certain times of the day on a map.

We subsequently collected data from the social networks’ APIs at 30-min intervals,

per listening post, and retrieved the local businesses data in the vicinity of the

listening post. We chose 30-min intervals to minimize our margin of error per check-

in, as the Foursquare API does not provide the check-in time. Foursquare’s check-in

timeout policy keeps a user checked into a place for a maximum of 3 h or until he

checks into another venue. Finally, our aggregated data consisted of: timestamps,

number of check-ins, total amount of check-ins, tags, likes and ratings. As such, the

data does not capture distinct check-ins, but rather how many people appear to be

checked into a venue at any point in time. Each of our listening post contained

multiple venues. In addition, if social media users added a new place by ‘‘checking-

in’’, our dataset was dynamically extended to include it in our analysis. In previous

work (Komninos et al. 2013b) we find that even if the frequency of social

interactions (i.e., check-ins) is low, collecting this data over a period of time gives

accurate descriptions of urban dynamics within an area of interest.

For scalability and interoperability, our system is capable of disseminating the

collected information to a range of ubiquitous devices and services, including
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desktop, mobile, wearable and city infrastructure devices through a purpose-built

web API that returns JSON formatted data to devices. In this paper, however, we

focus on the delivery to native mobile applications, which we describe in Sect. 4.

3.2 Deployment smart city infrastructure

The architecture described in the previous section runs on the PanOULU smart city

infrastructure. The city of Oulu is equipped with a citywide ubiquitous computing

infrastructure, which includes a free public access Wi-Fi network. A consortium of

municipalities, public organizations and ISPs provides the network. A large

proportion of the devices that use the network are owned by international visitors

that enjoy the open and free wireless Internet access as an alternative to exorbitant

international roaming fees of commercial mobile data. At the same time the network

has been a valuable resource for numerous projects (e.g., Linden et al. 2012).

3.3 Generating social context heatmap visualisations

Before the description of our mobile application, we discuss here the process of

generating heatmap visualisations. To achieve this, on the mobile side, we used the

Google Maps’ heatmap extension library Mapex.2 The library requires a list of

spatial coordinates (points defined by latitude, longitude and intensity) and once

provided with this, it draws a semi-transparent heatmap visualisation as a layer over

a simple Google map. As such, we created a relevant call in the HotCity API which

returns a list of the venues in a given area (defined as a geographic bounding box via

two sets of coordinates) and under temporal context, including the day (e.g.

‘‘Friday’’) and hour for which the information is required (e.g., ‘‘15’’—meaning

3 pm).

The API call works as follows. It first considers the geographic bounds passed to

it and retrieves all venues inside these bounds. Then, for each of these venues, it

sums the check-ins captured from Foursquare on that particular day and time of day

(used as point intensity), using a subset of our data dating back 60 days from the

time of query, and returns a list of venue objects in JSON (latitude, longitude and

intensity). We use the 60-day threshold to ensure that seasonality is taken into

account (and thus, not displaying for example winter popularity for venues, when

the query happens during the summer). In the returned subset, the data is normalised

to the nearest integer on to a scale of [10–100], thus giving venues with no check-ins

a minimum intensity of 10 and the point with the maximum number of check-ins an

intensity of 100. An example for how a single point’s intensity is calculated follows

in Table 2 below (using a 30-day threshold to shorten the example and assuming the

venue with the most check-ins has 60 check-ins).

Each point on the map ‘‘radiates’’ its intensity to a spatial radius (in our case, set

empirically to 70 m). Within the intensity radius of each point, the colours of the

heatmap change according to its total intensity, hence a single point would radiate

for 70 m with a colour from violet to red, according to the intensity of that point.

2 Mapex heatmap library https://github.com/chemalarrea/Mapex.
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The library on the local client then draws the final heatmap, calculating the colour of

each pixel according to the summed intensity at that pixel based on the average

intensity of overlapping points’ radii.

4 Sharing social context data with ubiquitous mobile applications

4.1 The pervasive display HotCity app

In Komninos et al. (2013a) we presented the outcomes of a controlled field

experiment in Oulu using a pervasive display, part of a city-wide ubiquitous

computing infrastructure, which includes a free public access Wi-Fi network and

ubiquitous outdoor large interactive touch-screen public displays called ‘‘UBI-

Hotspots’’. In this paper we will discuss how the HotCity concept performed in an

implementation as a mobile app (Android), using the same experiment set-up as in

Komninos et al. (2013a) and we will discuss the comparisons with the pervasive

display app as appropriate (the pervasive display interface is shown in Fig. 2c, d).

For completeness, in certain places we will also provide additional data about

participant behaviour not presented in Komninos et al. (2013a).

4.2 HotCity mobile app in detail

Our application consists of a main screen where users can see a map of downtown of

Oulu. Users can interact with this map and gain access to more activities by using

buttons that are visible around the screen (Fig. 2a, b).

In particular, in the top left corner we have placed a label that shows the day and

the hour for which the heatmap shows data. There are 3 icon buttons on the top right

corner of the screen: the clock icon (Fig. 2a, label 1) enables users to change the

heatmap depending on the day and the time they choose, the human icon (Fig. 2a,

label 2) downloads and shows all the POIs on the map, and the reload icon (Fig. 2a,

label 3) refreshes the heatmap data with current information. On the bottom right

Table 2 Calculating the

intensity of a point (venue) for

Fridays 15:00, dataset threshold

30 days, query on submitted on

2013-06-07 15:45

Point ID Timestamp Check-ins

4dc0d8a4ae60533f34e50c81 2013-06-07 15:36:37 1

4dc0d8a4ae60533f34e50c81 2013-05-31 15:06:37 2

4dc0d8a4ae60533f34e50c81 2013-05-31 15:36:37 0

4dc0d8a4ae60533f34e50c81 2013-05-24 15:06:37 1

4dc0d8a4ae60533f34e50c81 2013-05-24 15:36:37 5

4dc0d8a4ae60533f34e50c81 2013-05-17 15:06:37 3

4dc0d8a4ae60533f34e50c81 2013-05-17 15:36:37 4

4dc0d8a4ae60533f34e50c81 2013-05-10 15:06:37 3

4dc0d8a4ae60533f34e50c81 2013-05-10 15:36:37 3

Total check-ins 22

Normalised intensity 37
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corner we have placed a checkbox (Fig. 2a, label 4) that toggles the heatmap

overlay. Users can also filter the POIs by category. On the left bottom corner we

have placed a select combo box (Fig. 2a, label 5) that shows all the categories that

we have data for. With this layout, we developed a service that conveys a range of

contextual information to the user in a multi-layered view:

• Layer 0 (2D street map): this layer forms the base on which other layers can be

superimposed (i.e., the map of the city itself). It consists of a standard 2D street

map, as provided by the Google Maps API. Users can zoom and pan the map

using touch gestures (pinch and drag);

• Layer 1 (time-varying heatmap): a layer that shows a heatmap for the specific

day and time (Fig. 2b). The map affords users spatial understanding of their

surroundings. The heatmap is generated from check-in data throughout the hours

of the day and highlights which areas of the city are active or quiet at specific

times, this providing a spatial visualization of an area’s social ‘‘buzz’’. This

Fig. 2 The HotOulu mobile app main interface (a) and detail of the heatmap layer (b). Also shown, the
pervasive display app interface from Komninos et al. (2013a) (c) and display used by a participant (d)
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heatmap supports a temporal control, managed by the user: the user can select

specific days of the week and time of day (Fig. 3c). The heatmap uses a standard

‘‘rainbow’’ color scheme to indicate the socially active areas. Red shades are

used for hot areas while blue for the quiet ones. The heatmap is semi-transparent

to allow viewing of the underlying map;

• Layer 2 (POIs): an overlay with categorized points of interest (POIs) within the

city, provided by Foursquare’s APIs. The POI layer can be filtered by selecting

sub-categories using our prototype’s interface (Fig. 3a, b).

5 Evaluation

5.1 Task and experiment set-up

Our experiment set-up was identical to that in Komninos et al. (2013a). We

adopted a scenario-based approach to assess the heatmap’s information affor-

dances when visiting a new place. Our scenarios included non-trivial planning

tasks. These assumed that the user is in a completely new location for which they

are unprepared. They also assume that the user has not made previous plans and

has to rely on whatever information can be gathered by our service. Finally, they

require the user to not only think about the places which they will visit, but also

how far apart they might be, considering they do not know anything about this

new place. The scenarios are:

• Task 1: ‘‘It’s your second day in Oulu and you are walking in the street. Having

nothing specific to do, you have enough time to find and visit a landmark

(outdoor place)’’.

Fig. 3 Screenshots of our application’s control interfaces
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• Task 2: ‘‘It’s 2 PM on Wednesday and you are near Mannerheim Park, so you

have to find a restaurant around this area to go’’ [this park is next to the location

of our experiment].

• Task 3: ‘‘It’s Friday evening (8 PM) and you want to go out for a drink to see the

nightlife of Oulu but first you want to find a restaurant to eat’’.

We conducted a between-subjects experiment design with two distinct groups of

users for evaluation. One group was permitted to use Layers 1 (the time-varied

heatmap) and 2 (POIs), while the other was limited to just Layer 2 in order to

perform the three tasks. For each intervention, we recorded the elapsed time to

complete the task, followed by a short user subjective questionnaire to determine

complexity, ease of use, learnability, confidence and perceived utility. We further

investigated if users’ perceptions were affected by their own use of social networks,

with a separate questionnaire. All participants were told how the service works by

the team that conducted the survey.

5.2 Participants

In order to get a satisfactory and informative result we decided to conduct an

experiment with 30 participants (16 male, 14 female), 27 of whom were non-locals

(i.e. real tourists from various nationalities). Three researchers approached people of

all ages at a fixed outdoor location in the city and invited them to participate. We

conducted our experiment in a fixed location because the application and the

evaluation process focuses on POI selection using different visual approaches and

not on navigating participants around the city. The experiment took place in July, on

good weather days, so participants were not hindered by environmental conditions.

The participants’ age ranged from 14 to 47 years old (m = 27.3 years old,

stdev = 7.1). Based on the sample of almost exclusively tourists and their age range

(in Valls et al. 2014 it is reported that the average age of tourists who tend to use the

Internet and thus, by extent, are likely to use mobile and in-situ digital tourism tools,

is approx. 37 years old), we can argue that the field experiment has reasonable

ecological and external validity.

Before the task, we asked the participants how familiar they were with various

social networks and how often they use them (e.g., checking in a place, tagging

etc.), with responses recorded on Likert scales (0 = Don’t know this social network,

1–5 = never, rarely, sometimes, often, very often). We found that most of the

participants were familiar with Facebook followed by Twitter. Foursquare ranked in

fourth place while Instagram is ranked in third (Fig. 4a). Furthermore, we measured

the frequency of use of social media for specific actions that relate to spatial context

and we found that the actions of checking in, tagging locations and friends to photos

rank close to each other with the checking in action first (Fig. 4b), again using

Likert scales (0 = Don’t know this action, 1–5 = never, rarely, sometimes, often,

very often). This was important, as we needed to be sure that the participants knew

what a social network is and if they are familiar with the actions that it offers. The

results are directly comparable to those in Komninos et al. (2013a) showing that the

two subject groups had similar background and attitude to social network use.
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In addition to the above, we asked participants how often they use different

sources of information when they visit a new and unfamiliar city (Fig. 5). The

responses were measured on Likert scales (1–5 = never, rarely, sometimes, often,

very often). For most of the participants the main source of information comes from

their family and friends (1st) followed by tourism websites (2nd). Fewer participants

are using information from community travel websites (3rd) that ranks close to

tourism websites. Finally, traditional information sources like brochures, information

offices and guidebooks seem to be used rarely. This can indicate that most people

trust and prefer information that comes from people they know and are familiar with

and then they use other sources such as the Internet. Again the results are near

identical to those in Komninos et al. (2013a), hence validating the similarity of

participants’ background and attitude towards tourism information search.

5.3 Quantitative results

We recorded the time taken to complete each scenario, and additionally we recorded

the interactions of each user with the system: icon clicks and screens viewed. The

results of user interaction with the interface elements are shown in (Fig. 6).

The mobile app use data was divided by the heatmap groups and tested for

normality. For both groups (heatmap, no-heatmap), data is normally distributed

(Shapiro–Wilk, p[ 0.05). Although we did observe measurable differences in the

means of interaction types between the two groups, with the Heatmap group

(a) (b) 
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Frequency of use of social networks

1 2 3 4 5
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Check-in
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Frequency of social media interac�ons

Fig. 4 Participants’ engagement with social media (a) and frequent actions within these (b)
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Fig. 5 Participants’ habitual trip planning sources
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showing slightly higher statistics on both measures (Category clicks mNH = 6.43,

mH = 8.0 and POI clicks mNH = 12.0, mH = 15.0), an independent sample t test

showed that the differences are not statistically significant. This result shows that

the heatmap did not affect the interaction with the application for the interaction

categories that were common across participant groups, which means the heatmap

did not encourage participants to investigate more POIs. This result is in line with

those in Komninos et al. (2013a), also shown Fig. 6, where we also found that the

heatmap did not result in statistically significant differences in category selection

and POI selection behaviour. Notably, comparing between the two applications, we

observe that users employed the category filters more liberally in the pervasive

display case, compared to the mobile in both the heatmap (t = 3.44, p\ 0.05, two-

tailed independent sample t test) and no-heatmap conditions (t = 6.32, p\ 0.01,

two-tailed independent sample t test). The comparison of POI clicks was not

statistically significant in either condition between the applications. We can only

attribute this behaviour to the different layout in the two applications, as in the

pervasive display the cognitive cost of switching categories is less for the user, as

the map is not occluded, as is in the mobile map (the change only occurs on the left

panel of the display, while on the mobile the map is occluded by the category list).

In Komninos et al. (2013a) we did not report on the quality of the POIs selected

by participants, but since this data is available we will present it here and compare it

with that from mobile app users. With regard to the actual POIs that were selected

by our participants as their response to the task at hand, we note that the heatmap

visualization on the mobile seems to drive participants towards selecting a smaller

variety of distinct points (nNH = 43, nH = 38). The same observation applies to the

pervasive displays (nNH = 31, nH = 27). To examine the quality of those POIs in

terms of popularity, we multiplied the total check-ins at each point by the number of

times that POI was selected as a final choice, then divided by the sum of these
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Fig. 6 Participants’ observed interaction types

A. Komninos et al.

123



multiplications by the total number of participants who provided a final choice. This

metric provides an estimate of average POI popularity per group member. Further,

by looking at the popularity of the places selected in all tasks, as indicated by total

venue checkins, we observe that when using the mobile app, the heatmap group was

able to select on average more popular POIs than the no-heatmap group in tasks 2

and 3, showing that the heatmap visualization can result in better user experience for

more complex information seeking tasks (Fig. 7). On the other hand, while using the

pervasive display, the groups not using the heatmap selected POIs with greater

popularity, showing that in that case the heatmap visualisation did not improve their

ability to find popular places.

In Table 3, we show some measures of the areas that included participants’

selections for each task. In both the mobile app and pervasive display, the heatmap

resulted in exploration of larger areas across all tasks (considering the sum of the

explored areas in m2, with covered areas calculated from the convex hulls defined

by the outermost selected POIs). We further plotted the POIs selected by the

participants against a heatmap depicting the overall popularity of city areas in Oulu,

which we call the ‘‘Safety Zone’’ (i.e. the objectively popular part of the city, shown

by the red area of the heatmap). Care must be taken here not to confuse this with the

heatmap information shown to participants, as this heatmap represents the total

popularity of venues based on check-ins, irrespective of temporal context.

It should be borne in mind that the location of our experiment was in the midst of

this most popular part of the city, hence it is natural to expect that participants

would seek places that are not too far away from it, regardless of condition.

However, our observations show a different behaviour between the heatmap and no-

heatmap conditions. We observe that with the heatmap enabled, in both the mobile

and pervasive display apps, participants shifted their attention to select more POIs

that cluster near the bounds of the most popular part of the city (65.57 and 72.73%

respectively), compared to the no-heatmap condition (45.31 and 36.21% respec-

tively). This behavioural shift towards exploring the bounds of the safety zone came

Fig. 7 Popularity of selected POIs for each task
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mostly by at the expense of exploring the centre of the safety zone, as can be seen

by the nominal percentage differentials (DM = - 16.34%, DPD = - 30.38%) and

to a lesser extent from exploring fewer points outside the bounds of the safety zone

(DM = -3.92%, DPD = - 6.14%). This is exemplified by Fig. 8 below. In this

figure, the yellow and blue markers show ‘‘clusters’’ of two or more POIs that are

spatially very close together and the number in the marker shows the cluster size,

i.e. number of spatially proximal points (we use this visualisation to prevent the

problem of marker occlusion).

Combined with the larger area covered using the heatmap condition (Table 3), it

can be concluded that the heatmap caused a difference in the information seeking

behaviour and allowed for more ‘‘adventurous’’ exploration, however confining it

still within the ‘‘safety’’ of being mostly conducted in the most popular part of town.

Finally, in terms of time taken to complete the tasks (seconds), again data was

divided by the heatmap groups and tested for normality. The data in this case is

normally distributed for all tasks in the Heatmap group, and for Task 2 in the No

Heatmap group. The application recorded every action along with a unique ID used

to identify each participant and a timestamp. The timestamp provided information

about the time taken to complete each task and action. Moreover, for each task the

three researchers noted the time the participant started the task and the time that

made the final selection in order to confirm the duration of each task. For Task 2 an

independent sample t test shows a very small difference in the time that participants

took to complete the task (mNH = 53.6 s, mH = 53.07 s) which is not statistically

significant. For Task 1 (mNH = 121.0 s, mH = 89.93 s) and Task 3 (mNH = 64.67 s,

mH = 104.67 s), a Mann–Whitney test shows that the difference is only statistically

significant for Task 3 (p\ 0.05), which the Heatmap group took longer to complete.

In comparison, the task time completions were far longer in Komninos et al. (2013a)

and in that experiment we didn’t discover any statistically significant differences

attributable to the use of the heatmap in the pervasive display. The results are

summarized in Fig. 9.

5.4 Qualitative results

After each task, every participant completed a NASA TLX questionnaire, in order to

obtain their subjective opinion on the retrieval process. The findings are

summarized in Fig. 10 and Table 4 shows the relevant comparison statistical test

results. For all subscales, we found the distribution of responses to be non-normal,

Table 3 Participant-selected POI spatial characteristics (area coverage)

Covered area Task 1 (m2) Task 2 (m2) Task 3 (m2) Overall

Mobile No heatmap 506,766.16 63,725.89 332,506.51 902,998.56

Heatmap 1,149,845.65 10,515.16 548,231.46 1,708,592.27

Pervasive Displays No heatmap 390,867.94 2,681.61 179,894.95 573,444.49

Heatmap 301,055.26 6,177.62 380,142.44 687,375.32
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hence Mann–Whitney U tests show that the null hypotheses can be rejected for

Mental Demand, Perceived Performance and Effort (p\ 0.01), in contrast with the

(a) Mobile heatmap (b) Mobile no heatmap  Pervasive display 
heatmap

Pervasive display no 
heatmap

 Comparion of spatial distribution of selected POIs

(c) (d)

(e) 

Fig. 8 Spatial distribution of selected POIs using the mobile app Heatmap (a) and No Heatmap (b), and
the pervasive display Heatmap (c), No Heatmap (Komninos et al. 2013a) (d) and comparison (e)
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results in Komninos et al. (2013a) where we found no statistically significant

differences in any of the questionnaire subscales.

These results show that our users’ perceptions converge towards greater confidence

in their choices when using a heatmap on the mobile device, since they appear to believe

that they were more successful in identifying a good POI candidate with the help of the

heatmap. This, however, comes at a cost of higher mental demand and required effort.

Despite the statistically significant differences, it should be observed that on a positive

note, Mental Demand, Effort and Frustration are quite low overall for both groups (for

NASA-TLX, lower is better on all subscales except Performance). On the other hand, a

negative aspect is that perceived Performance is quite low, even for the Heatmap group,

while for both groups, Temporal Demand is relatively high. As concerns perceived

performance, its low nominal value can be attributed to the fact that in our experiment,

participants were not actually asked to visit and spend time at their selected venue, to

verify whether they indeed believed they made a good choice. As such, it is

understandable that participants might have reserved reasonable doubt about their

performance, hence the result should be interpreted as better performance with the
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Fig. 10 NASA-TLX subjective evaluation scores

Table 4 NASA-TLX comparison statistics for mobile users (Mann–Whitney U tests)

Mean St. Dev. Z p

Heatmap No heatmap Heatmap No heatmap

Mental Demand 5.000 3.667 2.989 3.730 - 3.340 0.001

Physical demand 2.822 2.267 2.908 2.824 - 1.190 0.234

Temporal demand 10.822 11.822 3.548 4.543 - 0.773 0.439

Perceived performance 4.733 2.422 4.364 2.671 - 3.677 0.000

Effort 5.644 2.200 3.713 1.869 - 4.926 0.000

Frustration 3.400 2.333 3.543 2.140 - 1.682 0.093

Results with statistical significance (p\ 0.05) are shown in bold
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heatmap in identifying the best possible choice from those presented to them in the app,

within a reasonable timeframe and in the context of the scenario given to them.

Further from the NASA-TLX questionnaire, we asked participants to provide

their subjective feedback on a 5-point Likert scale (1 = Strongly Disagree,

5 = Strongly Agree) on a further four questions, adapted from the System Usability

Scale, shown below.

Q1. I feel confident that I made good choices with help from this system

Q2. I would use this system frequently on a visit to an unfamiliar city

Q3. Most people would learn to use this system very quickly

Q4. The map display was needlessly complex.

Figures 11 and 12 shows the distribution of responses for each question. In terms

of confidence in choices, we see more positive responses when using the heatmap in

Fig. 11 Subjective evaluation scores (mobile)

Fig. 12 Subjective evaluation scores (pervasive display Komninos et al. 2013a)
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both the mobile and pervasive display devices. Participants seem equally positively

disposed to using our system in both the mobile and pervasive display versions,

regardless of including the heatmap. Similarly we do not observe significant

differences in their perception of how easy to learn the system would be, indicating

that the heatmap element appears to be intuitive. The level of negative responses in

Q4 indicates that participants also did not feel that the heatmap overly complicates

the map on the mobile device, although they felt the map on the pervasive display

was slightly more burdened by this element.

Lastly, we collected free-form feedback from participants, in the shape of

comments at the end of the experiment. Participants without the heatmap

visualization gave overall positive feedback on the ease of use and utility of the

system (8 comments). Amongst them we also found many suggestions for

improvements (12 in total) and the most desired feature was more information about

venues such as opening hours, venues local comments and some sort of rating

(participants suggested a star system or a 1–5 scale). Two participants also

commented on the utility of the application as being best suited to tourists or young

people. Heatmap participants enjoyed the idea of visualizing social context (12

comments in total), as indicated by their enthusiastic feedback:

• Very nice app! young people tag themselves in cool places (because they wanna

tell they were there) and then non locals people can find those places.

• Very fun app if you want to avoid popular places/be exactly there.

• It’s quite interesting to see that people really check in to those places, in that

way heatmap info is interesting.

• Good application because there are places where people have really visited. It

really helps. I would use this application when visiting in a new city with

pleasure.

• It was good that with this app you know where people go.

• Good idea! If a place is popular is also a good one. The app doesn’t require

much effort to use.

• It is good thing that this application shows the most popular places where

people have checked in. This is good when traveling abroad. Usually there are

good food where are the most popular places.

Participants also provided some comments on improving the app, which again

related to being able to see more information such as opening hours and menus (6

comments). Two participants also felt that the application could be a little faster (in

terms of downloading and presenting data) and a further four commented that the

categories were ‘‘too broad’’ and needed further refinement.

6 Free-running deployment of the pervasive display HotCity app

As a final step in our paper, we present some findings from the free-running

deployment of the HotCity app in the pervasive displays in Oulu. After the end

of the experiment in Komninos et al. (2013a), we left the application running
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on the Ubi-Hotspots of the city, allowing any user to freely access it for their

own use. Although by no means a controlled experiment, and noting that we

are unable to obtain any user characteristics from this mode of use, we present

here some interesting statistics of use in the 3 years that the application has

been available.

In total, the application has been used 1188 times. From this usage, the majority

of sessions has very few interactions (clicks on the various interface elements),

namely 1–3 interaction events. For our analysis of use thus we consider only those

sessions which have between 5–24 events, as these make up approximately 60% of

all usage cases, i.e. 713 sessions (Fig. 13).

One immediately interesting observation is that only 6% (42) sessions actually

involved the selection of any POIs for viewing. The remaining sessions involved only

the manipulation of heatmap (selecting a time and day to update the heatmap) or seeing

venues with more than a given number of persons checked in currently. In Table 5

below, we outline the distribution of interaction events, where it is clearly shown that

Fig. 13 Distribution of sessions based on number of interaction events during free use

Table 5 Interaction events in

sessions with 5–24 events
Event Occurrences Percentage

Switch to home tab 1030 17.66

Switch to heatmap tab 746 12.79

Heatmap updates 583 9.99

Heatmap toggle 249 4.27

Switch to categories tab 738 12.65

Select a POI category 1155 19.80

Switch to people tab 523 8.97

People updates 366 6.27

Wikipedia POI clicks on map 80 1.37

Wikipedia POI toggle on map 254 4.35

POI clicks on map 109 1.87

Total events 5833 100.00
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users were mostly interested in exploring the heatmap, altering the POI categories

visible on the map and seeing POIs where people are currently checked in.

In those sessions where POIs were selected for viewing, 42% of the POIs were

clicked while the heatmap was disabled, while 58% were clicked with the heatmap

shown. We subsequently visualised the selected POIs over a popularity heatmap of

the city, to see whether the presence of the heatmap seemed to affect the spatial

distribution of the users’ selection. The popularity heatmap is derived by the overall

number of checkins in all venues, regardless of time of day. The results are shown in

Fig. 14.

We note from this figure that in the case of the heatmap being displayed, 63% of

viewed POIs are clustered in the two most popular areas of the city, while in the

case of the heatmap being hidden, only 49% are clustered in the central and most

popular area of the city. We note also that participants’ choices are more

geographically restricted, covering an area of 1,201,158.77 m2 with the heatmap

(perimeter = 4390.381 m), while without the heatmap the covered area is

1,316,066.43 m2 (perimeter = 4975.198 m) This provides some evidence that the

heatmap can have an effect on guiding users’ choices, though given the nature of the

data, we report this conclusion with some caution.

Fig. 14 POI selections during free use with the heatmap displayed (a) and hidden (b)
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7 Discussion and conclusion

Visitations in a city are an experience that include both the tourist’s presence at

individual venues (e.g. a museum or a restaurant) and also entire areas (e.g. the

market district or historic neighbourhoods). Even though recommendations for

specific venues have been the focus of much study via the mining of social network

data, the recommendation of areas is a subject in literature that remains

unexamined. Our comprehensive review of literature on tourism-oriented system

infrastructures including mobile and/or access to urban mobility patterns high-

lighted various shortcomings of current research, notably in the depiction of spatial

context, the consideration of temporal context, the usability and cognitive impact of

area context visualisations on tourists, and the duration and limited scope of current

studies. These shortcomings form the main motivation of our work and frame the

positioning of our contribution to the field.

Based on these, we hypothesized that providing a highlight as a background

layer, instead of a foreground layer, informs the user of area importance without

obfuscating their understanding of the underlying maps’ cartography. More

specifically, we attempted to investigate the effect of a heatmap visualization could

serve as such a layer for conveying urban social context. The main goal of our paper

was to extend the findings from our previous study using pervasive displays, into the

use case of smartphones, and to compare between the two. Our results show that

users behaved similarly with both a traditional map-and-POI and a heatmap

augmented system. We did not find many significant differences in both quantitative

and qualitative data on the users’ experience with information seeking tasks using

the two systems. This is a positive outcome, since the potential additional

complexity introduced by the heatmap layer did not negatively affect our

participants’ behavior when using maps.

More importantly, we also found evidence that a heatmap layer that is used as a

‘‘recommender’’ system for areas, compared to highlighting individual points,

provides distinct advantages in the provision of social context. Although heatmap

users selected on average the same amount of candidate POIs for the tasks, their

final choices were more concentrated spatially, which shows that a heatmap can

indeed act as an attractor to specific regions of the urban environment. Furthermore,

on average, heatmap users tended to select venues of better quality, as indicated by

the Foursquare venue popularity of the chosen places. Feedback from our heatmap

group participants shows that their perception of urban space is altered through the

use of the heatmap, as it affords an understanding of social use under the additional

context of time. The heatmap can be seen to support exploration without dictating

specific venues as destinations. Users can discover and be attracted by areas, rather

than follow goal-driven instructions, which may lead to disappointment (e.g. venues

that are fully booked, not busy enough, isolated from other venues) and leave users

without suitable alternatives. Further, visitors using the heatmap can get a better feel

for the true ‘‘vibe’’ of a city as it evolves throughout the day and visit contextually

relevant areas, making their experience more worthwhile. This demonstrates that

using such approach is a great tool to market and highlight special city areas on
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demand. To some extent, our prototype enhanced the visitor’s experience using the

widely available mobile phone.

Perhaps though, the most revealing finding from this data is that it provides

ample evidence of our hypothesis that users really don’t seem interested in

individual POIs. Instead users were more interested in exploring the dynamics of

areas at different times in the day and further to obtain an idea of the categories of

venues in these areas. This is a radical shift from the design of most current travel

and location-based mobile and web services, which place a strong focus on the

individual selection of single POIs (e.g. TripAdvisor, FourSquare, Google Maps).

We feel strongly that designers of such services should take this point into account

and provide alternative cartographic visualisations that will support the users’ desire

to be informed but also to allow for serendipitous discovery and exploration of

urban areas, instead of attempting to guide users to particular POIs.

These advantages seem to come at a price. Our users felt greater confidence in

their choices when using a heatmap, albeit at a cost of higher mental demand and

required effort to achieve these performances. Fortunately, these costs are not

substantial as the differences between the traditional and heatmap visualisations are

small, and considerably below the mid-point in our measurement scales. Feedback

from our participants was also very encouraging and shows that our idea is

perceived as helpful and worth pursuing further.

As with all studies, the internal and external validity of the experiments are a

concern which merits discussion. In Kjeldskov et al. (2005) it is shown that the

usability evaluation of mobile guides benefits differently from a range of different

evaluation approaches, from discount usability evaluation, to lab tests and field

trials. In this case, we opted for a semi-controlled field experiment, which enhances

the ecological validity of our findings, due to the small, but nonetheless reasonable,

number of participants, who were by large majority actual tourists, as well as due to

the situatedness of the experiment. In this experiment, the increased ecological

validity impacts the internal validity of our findings—participants might have been

distracted by the environment, or felt pressed for time to complete the experiment

and move on to their other activity. Hence we would like to repeat some of this work

in a laboratory setting, examining the usability of heatmaps with think-aloud

techniques, a process which would allow us to bring out the mental models that

describe the users’ interaction with the system. Such models would allow us to

better design the information visualisation options and repeat field studies. Although

we demonstrated the usefulness of a heatmap-type visualization of social context, in

the future, we aim to take our concept further by exploring social context sharing

through different visualizations. Based on participant feedback and motivated by the

issue of cognitive load, we believe a better approach might be found in a

visualization that affords a better mapping between real-world definitions of space

and social context. As an example, we have started looking at automatically

produced choropleth type visualizations (i.e. a map split in geographic segments,

which are shaded or patterned in proportion to a statistical variable being displayed

on the map. Such maps could that segment urban layouts based on road data from

OpenStreetMap, in an effort to better encompass commonly used concepts such as

‘‘city blocks’’ and ‘‘neighbourhoods’’. Figure 15 shows output from preliminary
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work that we have done on a choropleth-generating urban segmentation algorithm,

which is paired with social media data to create an environmental social context

visualization.

The external validity of our findings could be improved by including a larger

population sample with more participants spanning a variety of ages and

backgrounds. For our current study, we had to assign realistic, but still artificial

tasks to our participants. A future study that involves free use of the application for

the duration of a visit would be desirable, although such a study would be hard to

orchestrate with real tourists. To do this successfully, we would need tourists to

explicitly state their information seeking needs every time the app is used and track

their movement during the period of usage, raising significant concerns for privacy

and potentially safety of the visitors. However, the analysis of free-use data obtained

over a three-year period provides further supporting evidence to the findings of our

controlled experiments.

As mentioned previously, our work relies solely on data from the Foursquare

API, though our platform does collect data from both Facebook and Google APIs.

The Facebook API provides social information such as ‘‘Likes’’ and ‘‘Tags’’ (people

tagging posts or images with venues and locations). Using Google Places API we

collect information about the user ratings of an establishment or location. However

the use of data from multiple sources poses significant inherent challenges. Firstly,

physical venues are represented non-uniformly across the various APIs, through

variations in naming (e.g. a place called ‘‘The Arc’’ can be represented as ‘‘Arc’’,

‘‘Arc Café’’, ‘‘Café Arc’’) and spatial coordinates, which may differ by several

meters (in some cases, up to several hundred). This is understandable, many of these

venue representations are generated by users themselves who rely on inaccurate

positioning methods or even cases where a place has moved premises. These

changes are not homogeneously reflected across all APIs. Another challenge is a

scarcity of understanding of social media data correlations (e.g. is a venue with

many ‘‘Likes’’ on Facebook likely to attract many ‘‘Check-ins’’ on Foursquare or a

high rating on Google Places?) and an understanding of which values that are

pertinent to a place are most indicative of popularity. These challenges go beyond

the scope of this paper, but definitely open up an interesting and important area of

further research that merits following-up.

Fig. 15 The choropleth segmentation algorithm (a) paired with social media data from Foursquare (b)
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Bergé LP, Serrano M, Perelman G, Dubois E (2014) Exploring smartphone-based interaction with

overview? detail interfaces on 3D public displays. In: Proceedings of the 16th international

conference on human–computer interaction with mobile devices and services. ACM, pp 125–134

Braunhofer M, Ricci F (2017) Selective contextual information acquisition in travel recommender

systems. Inf Technol Tour 17(1):5–29

Braunhofer M, Elahi M, Ricci F (2014) Techniques for cold-starting context-aware mobile recommender

systems for tourism. Intell Artif 8(2):129–143

Calabrese F, di Lorenzo G (2011) Estimating origin—destination flows using mobile phone location data.

Cell 10(2011):36–44

Calabrese F, Reades J, Ratti C (2010) Eigenplaces: segmenting space through digital signatures.

Pervasive Comput 9(2010):78–84

Carter S, Marlow J, Cooper M (2017) No app needed: enabling mobile phone communication with a

tourist kiosk using cameras and screens. In: Proceedings of the 2017 ACM international joint

conference on pervasive and ubiquitous computing and proceedings of the 2017 ACM international

symposium on wearable computers. ACM, pp 221–224

Cheverst K, Davies N, Mitchell K, Friday A, Efstratiou C (2000) Developing a context-aware electronic

tourist guide: some issues and experiences. In: Proceedings of the SIGCHI conference on human

factors in computing systems—CHI ’00, pp 17–24

Churchill EF, Nelson L, Denoue L, Girgensohn A (2003) The plasma poster network: posting multimedia

content in public places. Interfaces 1(2003):599–606
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Valls JF, Sureda J, Valls-Tuñon G (2014) Attractiveness analysis of European tourist cities. J Travel Tour

Mark 31(2):178–194

van Setten M, Pokraev S, Koolwaaij J (2004) Context-aware recommendations in the mobile tourist

application COMPASS. Adaptive hypermedia and adaptive web-based systems. Springer, Berlin

Komninos A, Besharat J, Ferreira D, Garofalakis J (2013a) HotCity: enhancing ubiquitous maps with

social context heatmaps. In Proceedings of the 12th International Conference on Mobile and

Ubiquitous Multimedia. ACM, Lulea, p 52. https://doi.org/10.1145/2541831.2543694

Komninos A, Stefanis V, Plessas A, Besharat J (2013b) Capturing urban dynamics with scarce check-in

data. IEEE Pervasive Comput 12(4):20–28

Yang D, Zhang D, Yu Z, Yu Z (2013) Fine-grained preference-aware location search leveraging

crowdsourced digital footprints from LBSNs. In: Proceedings of the 2013 ACM international joint

conference on pervasive and ubiquitous computing. ACM, pp 479–488

Where’s everybody? Comparing the use of heatmaps to…

123

https://doi.org/10.1080/08839510802379626
https://doi.org/10.1080/08839510802379626
https://doi.org/10.1145/2541831.2543694

	Where’s everybody? Comparing the use of heatmaps to uncover cities’ tacit social context in smartphones and pervasive displays
	Abstract
	Introduction
	Related work
	Ubiquitous computing systems for tourism
	Urban dynamics for tourism applications
	Recommending areas instead of single venues

	HotCity architecture
	Extracting social network information
	Deployment smart city infrastructure
	Generating social context heatmap visualisations

	Sharing social context data with ubiquitous mobile applications
	The pervasive display HotCity app
	HotCity mobile app in detail

	Evaluation
	Task and experiment set-up
	Participants
	Quantitative results
	Qualitative results

	Free-running deployment of the pervasive display HotCity app
	Discussion and conclusion
	Acknowledgements
	References




